scholarly journals Genomic diversity of Escherichia coli isolates from non-human primates in the Gambia

Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

AbstractIncreasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between host species. We have investigated genomic diversity, and antimicrobial resistance in Escherichia coli isolates from four species of non-human primate in the Gambia: Papio papio (n=22), Chlorocebus sabaeus (n=14), Piliocolobus badius (n=6) and Erythrocebus patas (n=1). We performed Illumina whole-genome sequencing on 101 isolates from 43 stools, followed by nanopore long-read sequencing on eleven isolates. We identified 43 sequence types (STs) by the Achtman scheme (ten of which are novel), spanning five of the eight known phylogroups of E. coli. The majority of simian isolates belong to phylogroup B2—characterised by strains that cause human extraintestinal infections—and encode factors associated with extraintestinal disease. A subset of the B2 strains (ST73, ST681 and ST127) carry the pks genomic island, which encodes colibactin, a genotoxin associated with colorectal cancer. We found little antimicrobial resistance and only one example of multi-drug resistance among the simian isolates. Hierarchical clustering showed that simian isolates from ST442 and ST349 are closely related to isolates recovered from human clinical cases (differences in 50 and seven alleles respectively), suggesting recent exchange between the two host species. Conversely, simian isolates from ST73, ST681 and ST127 were distinct from human isolates, while five simian isolates belong to unique core-genome ST complexes—indicating novel diversity specific to the primate niche. Our results are of public health importance, considering the increasing contact between humans and wild non-human primates.Impact statementLittle is known about the population structure, virulence potential and the burden of antimicrobial resistance among Escherichia coli from wild non-human primates, despite increased exposure to humans through the fragmentation of natural habitats. Previous studies, primarily involving captive animals, have highlighted the potential for bacterial exchange between non-human primates and humans living nearby, including strains associated with intestinal pathology. Using multiple-colony sampling and whole-genome sequencing, we investigated the strain distribution and population structure of E. coli from wild non-human primates from the Gambia. Our results indicate that these monkeys harbour strains that can cause extraintestinal infections in humans. We document the transmission of virulent E. coli strains between monkeys of the same species sharing a common habitat and evidence of recent interaction between strains from humans and wild non-human primates. Also, we present complete genome assemblies for five novel sequence types of E. coli.Author notesAll supporting data, code and protocols have been provided within the article or through supplementary data files. Nine supplementary figures and six supplementary files are available with the online version of this article.AbbreviationsExPEC, Extraintestinal pathogenic Escherichia coli; ST, Sequence type; AMR, Antimicrobial resistance; MLST, Multi-locus sequence typing; VFDB, Virulence factors database; SNP, single nucleotide polymorphism; SPRI, Solid phase reversible immobilisation.Data summaryThe raw sequences and polished assemblies from this study are available in the National Center for Biotechnology Information (NCBI) Short Read Archive, under the BioProject accession number PRJNA604701. The full list and characteristics of these strains and other reference strains used in the analyses are presented in Table 1 and Supplementary Files 1-4 (available with the online version of this article).

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jose F. Delgado-Blas ◽  
Cristina M. Ovejero ◽  
Sophia David ◽  
Natalia Montero ◽  
William Calero-Caceres ◽  
...  

AbstractAquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1504
Author(s):  
Frederick Adzitey ◽  
Jonathan Asante ◽  
Hezekiel M. Kumalo ◽  
Rene B. Khan ◽  
Anou M. Somboro ◽  
...  

Escherichia coli are among the most common foodborne pathogens associated with infections reported from meat sources. This study investigated the virulome, pathogenicity, stress response factors, clonal lineages, and the phylogenomic relationship of E. coli isolated from different meat sources in Ghana using whole-genome sequencing. Isolates were screened from five meat sources (beef, chevon, guinea fowl, local chicken, and mutton) and five areas (Aboabo, Central market, Nyorni, Victory cinema, and Tishegu) based in the Tamale Metropolis, Ghana. Following microbial identification, the E. coli strains were subjected to whole-genome sequencing. Comparative visualisation analyses showed different DNA synteny of the strains. The isolates consisted of diverse sequence types (STs) with the most common being ST155 (n = 3/14). Based Upon Related Sequence Types (eBURST) analyses of the study sequence types identified four similar clones, five single-locus variants, and two satellite clones (more distantly) with global curated E. coli STs. All the isolates possessed at least one restriction-modification (R-M) and CRISPR defence system. Further analysis revealed conserved stress response mechanisms (detoxification, osmotic, oxidative, and periplasmic stress) in the strains. Estimation of pathogenicity predicted a higher average probability score (Pscore ≈ 0.937), supporting their pathogenic potential to humans. Diverse virulence genes that were clonal-specific were identified. Phylogenomic tree analyses coupled with metadata insights depicted the high genetic diversity of the E. coli isolates with no correlation with their meat sources and areas. The findings of this bioinformatic analyses further our understanding of E. coli in meat sources and are broadly relevant to the design of contamination control strategies in meat retail settings in Ghana.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244358
Author(s):  
Rafika Indah Paramita ◽  
Erni Juwita Nelwan ◽  
Fadilah Fadilah ◽  
Editha Renesteen ◽  
Nelly Puspandari ◽  
...  

Escherichia coli are one of the commonest bacteria causing bloodstream infection (BSI). The aim of the research was to identify the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance of E. coli isolated from bloodstream infection hospitalized patients in Cipto Mangunkusumo National Hospital Jakarta. We used whole genome sequencing methods rather than the conventional one, to characterized the serotypes, MLST (Multi Locus Sequence Type), virulence genes, and antimicrobial resistance (AMR) of E. coli. The composition of E. coli sequence types (ST) was as follows: ST131 (n = 5), ST38 (n = 3), ST405 (n = 3), ST69 (n = 3), and other STs (ST1057, ST127, ST167, ST3033, ST349, ST40, ST58, ST6630). Enteroaggregative E. coli (EAEC) and Extra-intestinal pathogenic E. coli (ExPEC) groups were found dominant in our samples. Twenty isolates carried virulence genes for host cells adherence and 15 for genes that encourage E. coli immune evasion by enhancing survival in serum. ESBL-genes were present in 17 E. coli isolates. Other AMR genes also encoded resistance against aminoglycosides, quinolones, chloramphenicol, macrolides and trimethoprim. The phylogeny analysis showed that phylogroup D is dominated and followed by phylogroup B2. The E. coli isolated from 22 patients in Cipto Mangunkusumo National Hospital Jakarta showed high diversity in serotypes, sequence types, virulence genes, and AMR genes. Based on this finding, routinely screening all bacterial isolates in health care facilities can improve clinical significance. By using Whole Genome Sequencing for laboratory-based surveillance can be a valuable early warning system for emerging pathogens and resistance mechanisms.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Ebenezer Foster-Nyarko ◽  
Nabil-Fareed Alikhan ◽  
Anuradha Ravi ◽  
Gaëtan Thilliez ◽  
Nicholas Thomson ◽  
...  

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between different host species. We have investigated genetic diversity and antimicrobial resistance in Escherichia coli isolates from a range of non-human primates dispersed across the Gambia: patas monkey (n=1), western colobus monkey (n=6), green monkey (n=14) and guinea baboon (n=22). From 43 stools, we recovered 99 isolates. We performed Illumina whole-genome shotgun sequencing on all isolates and nanopore long-read sequencing on isolates with antimicrobial resistance genes. We inferred the evolution of E. coli in this population using the EnteroBase software environment. We identified 43 sequence types (ten of them novel), spanning five of the eight known phylogroups of E. coli. Many of the observed sequence types and phylotypes from non-human primates have been associated with human extra-intestinal infection and carry virulence characteristics associated with disease in humans, particularly ST73, ST217 and ST681. However, we found a low prevalence of antimicrobial resistance genes in isolates from non-human primates. Hierarchical clustering showed that ST442 and ST349 from non-human primates are closely related to isolates from human infections, suggesting recent exchange of bacteria between humans and monkeys. Our results are of public health importance, considering the increasing contact between humans and wild primates.


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Bede Constantinides ◽  
Kevin K. Chau ◽  
T. Phuong Quan ◽  
Gillian Rodger ◽  
Monique I. Andersson ◽  
...  

Escherichia coli and Klebsiella spp. are important human pathogens that cause a wide spectrum of clinical disease. In healthcare settings, sinks and other wastewater sites have been shown to be reservoirs of antimicrobial-resistant E. coli and Klebsiella spp., particularly in the context of outbreaks of resistant strains amongst patients. Without focusing exclusively on resistance markers or a clinical outbreak, we demonstrate that many hospital sink drains are abundantly and persistently colonized with diverse populations of E. coli , Klebsiella pneumoniae and Klebsiella oxytoca , including both antimicrobial-resistant and susceptible strains. Using whole-genome sequencing of 439 isolates, we show that environmental bacterial populations are largely structured by ward and sink, with only a handful of lineages, such as E. coli ST635, being widely distributed, suggesting different prevailing ecologies, which may vary as a result of different inputs and selection pressures. Whole-genome sequencing of 46 contemporaneous patient isolates identified one (2 %; 95 % CI 0.05–11 %) E. coli urine infection-associated isolate with high similarity to a prior sink isolate, suggesting that sinks may contribute to up to 10 % of infections caused by these organisms in patients on the ward over the same timeframe. Using metagenomics from 20 sink-timepoints, we show that sinks also harbour many clinically relevant antimicrobial resistance genes including bla CTX-M, bla SHV and mcr, and may act as niches for the exchange and amplification of these genes. Our study reinforces the potential role of sinks in contributing to Enterobacterales infection and antimicrobial resistance in hospital patients, something that could be amenable to intervention. This article contains data hosted by Microreact.


2008 ◽  
Vol 190 (20) ◽  
pp. 6881-6893 ◽  
Author(s):  
David A. Rasko ◽  
M. J. Rosovitz ◽  
Garry S. A. Myers ◽  
Emmanuel F. Mongodin ◽  
W. Florian Fricke ◽  
...  

ABSTRACT Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of ∼2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.


2017 ◽  
Vol 22 (16) ◽  
Author(s):  
Marta Corbella ◽  
Bianca Mariani ◽  
Carolina Ferrari ◽  
Francesco Comandatore ◽  
Erika Scaltriti ◽  
...  

We describe three cases of bloodstream infection caused by colistin-resistant Escherichia coli in patients in a tertiary hospital in Italy, between August 2016 and January 2017. Whole genome sequencing detected the mcr-1 gene in three isolated strains belonging to different sequence types (STs). This occurrence of three cases with mcr-1-positive E. coli belonging to different STs in six months suggests a widespread problem in settings where high multidrug resistance is endemic such as in Italy.


2016 ◽  
Vol 61 (3) ◽  
Author(s):  
Ling-Han Kong ◽  
Chang-Wei Lei ◽  
Su-Zhen Ma ◽  
Wei Jiang ◽  
Bi-Hui Liu ◽  
...  

ABSTRACT Sixteen different sequence types (STs) of Escherichia coli isolates from a commercial swine farm in China were confirmed to coharbor the carbapenem resistance gene bla NDM-5 and the colistin resistance gene mcr-1. Whole-genome sequencing revealed that bla NDM-5 and mcr-1 were located on a 46-kb IncX3 plasmid and a 32-kb IncX4 plasmid, respectively. The two plasmids can transfer together with a low fitness cost, which might explain the presence of various STs of E. coli coharboring bla NDM-5 and mcr-1.


2020 ◽  
Author(s):  
Robert Murphy ◽  
Martin Palm ◽  
Ville Mustonen ◽  
Jonas Warringer ◽  
Anne Farewell ◽  
...  

AbstractEscherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenic and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in non-human hosts and E. coli in humans is still scarce. In this study, we analysed the whole genome sequencing data of a collection of 119 commensal E. coli recovered from the guts of 68 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli colonizing wild animals and the phylogeny, taxonomy and ecological and physiological attributes of the host species, with distantly related E. coli often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic for Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harboured the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli in wild animal hosts often harboured known antibiotic resistance determinants, including against ciprofloxacin, aminoglycosides, tetracyclines and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that although the genome pools of E. coli colonizing wild animal and human gut are well separated, they share virulence and antibiotic resistance genes and E. coli underscoring that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections.ImportanceEscherichia coli is a clinically importance bacterial species implicated in human and livestock associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock and wild animals. Although wild animals are recognized to serve as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study we used the fine resolution of whole genome sequencing to provide novel insights into the evolution of E. coli genomes within a broad range of wild animal species (including mammals and birds), the co-evolution of E. coli strains with their hosts and the genetics of pathogenicity of E. coli strains in wild hosts. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and necessitate the inclusion of non-human hosts in the surveillance programs for E. coli infections.


2019 ◽  
Author(s):  
Bálint Ármin Pataki ◽  
Sébastien Matamoros ◽  
Boas C.L. van der Putten ◽  
Daniel Remondini ◽  
Enrico Giampieri ◽  
...  

2.AbstractA possible way to tackle the crisis of antimicrobial resistance development is a strict policy when prescribing antibiotics. Thus, it is important that prescriptions are based on antimicrobial susceptibility data to ensure effective treatment outcomes. The increasing availability of next-generation sequencing (NGS), bacterial whole genome sequencing (WGS) can facilitate a more reliable and faster alternative to traditional phenotyping for the detection and surveillance of AMR.This work proposes a machine learning approach that can predict the minimum inhibitory concentration (MIC) for a given antibiotic, here ciprofloxacin, on the basis of both genome-wide mutation profiles and profiles of acquired antimicrobial resistance genes (ARG). We analysed 704 Escherichia coli genomes combined with their respective MIC measurements for ciprofloxacin originating from different countries. The four most important predictors found by the model, mutations in gyrA residues Ser83 and Asp87, a mutation in parC residue Ser80 and presence of any qnrS gene, have been experimentally validated before. Using only these four predictors in a linear regression model, 65% and 92% of the test samples’ MIC were correctly predicted within a two- and a four-fold dilution range, respectively. The presented work goes further than the typical predictions that use machine learning as a black box model concept. The recent progress in WGS technology in combination with machine learning analysis approaches indicates that in the near future WGS of bacteria might become cheaper and faster than a MIC measurement.3.Impact statementWhole genome sequencing has become the standard approach to study molecular epidemiology of bacteria. However, the application of WGS in the clinical microbiology laboratory as part of individual patient diagnostics still requires significant steps forward, in particular with respect to prediction of antibiotic susceptibility based on DNA sequence. Whilst the majority of studies of prediction of susceptibility have used a binary outcome (susceptible/resistant), a quantitative prediction of susceptibility, such as the MIC, will allow for earlier detection of trends in increasing resistance as well as the flexibility to follow potential adjustments in definitions of susceptible (wild type) and resistant (non-wild type) categories (breakpoints/ epidemiological cut-off values).4.Data summaryIn this study, 704 E. coli genomes combined with MIC measurement for ciprofloxacin were analysed (24). Paired-end sequencing was performed on all isolates and the results were stored in FASTQ format. The isolates originated from five countries, Denmark, Italy, USA, UK, and Vietnam. The MIC distribution for these isolates is depicted in Table 1. Out of 704, 266 E. coli genomes had no country metadata available and were used as an independent test set. All data were deposited in the AMR Data Hub (24) which consists of raw sequencing data, ciprofloxacin minimum inhibitory concentrations, and additional metadata such as the origin of the samples.TABLE 1The collected and used data in the analysis grouped by country and MIC values.Publicly available sequencing data was used from projects PRJEB21131, PRJNA266657, PRJNA292901, PRJNA292904, PRJNA292902, PRJDB7087, PRJEB21880, PRJEB21997, PRJEB14086 and PRJEB16326.Download and analysis scripts are available at https://github.com/patbaa/AMR_ciprofloxacin. iTOL phylogenetic tree is available at https://itol.embl.de/tree/14511722611491391569485969.The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary data files.


Sign in / Sign up

Export Citation Format

Share Document