scholarly journals Discerning the role of a functional arsenic-resistance cassette in the evolution and adaptation of a rice pathogen

2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Amandeep Kaur ◽  
Rekha Rana ◽  
Tanu Saroha ◽  
Prabhu B. Patil

Arsenic is highly toxic element to all forms of life and is a major environmental contaminant. Understanding acquisition, detoxification and adaptation mechanisms in bacteria that are associated with the host in arsenic-rich conditions can provide novel insights into the evolutionary dynamics of host–microbe–environment interactions. In the present study, we have investigated an arsenic-resistance mechanism acquired during the evolution of a particular lineage in the population of Xanthomonas oryzae pv. oryzae, which is a serious plant pathogen infecting rice. Our study revealed the horizontal acquisition of a novel chromosomal 12 kb ars cassette in X. oryzae pv. oryzae IXO1088 that confers high resistance to arsenate/arsenite. The ars cassette comprises several genes that constitute an operon induced in the presence of arsenate/arsenite. Transfer of the cloned ars cassette to X. oryzae pv. oryzae BXO512, which lacks the cassette, confers an arsenic-resistance phenotype. Furthermore, the transcriptional response of X. oryzae pv. oryzae IXO1088 under arsenate/arsenite exposure was analysed using RNA sequencing. Arsenic detoxification and efflux, oxidative stress, iron acquisition/storage, and damage repair are the main cellular responses to arsenic exposure. Our investigation has provided insights into the existence of a novel detoxification and adaptation mechanism within the X. oryzae pv. oryzae population to deal with high-arsenic conditions outside the rice plant.

2020 ◽  
Author(s):  
Amandeep Kaur ◽  
Rekha Rana ◽  
Tanu Saroha ◽  
Prabhu B. Patil

AbstractArsenic (As) is highly toxic element to all forms of life and is a major environmental contaminant. Understanding acquisition, detoxification, and adaptation mechanisms in bacteria that are associated with host in arsenic-rich conditions can provide novel insights into dynamics of host-microbe-microenvironment interactions. In the present study, we have investigated an arsenic resistance mechanism acquired during the evolution of a particular lineage in the population of Xanthomonas oryzae pv. oryzae (Xoo), which is a serious plant pathogen infecting rice. Our study revealed the horizontal acquisition of a novel chromosomal 12kb ars cassette in Xoo IXO1088 that confers high resistance to arsenate/arsenite. The ars cassette comprises several genes that constitute an operon induced in the presence of arsenate/arsenite. Transfer of cloned ars cassette to Xoo BXO512 lacking it confers arsenic resistance phenotype. Further, the transcriptional response of Xoo IXO1088 under arsenate/arsenite exposure was analyzed using RNA sequencing. Arsenic detoxification and efflux, oxidative stress, iron acquisition/storage, and damage repair are the main cellular responses to arsenic exposure. Our investigation has provided novel insights in to how a pathogenic bacterium is coping with arsenic-rich unique micro-environments like seen in rice growing in submerged water conditions.Impact statementArsenic accumulation in rice is a serious and unique agronomic issue. Arsenic contaminated groundwater used for irrigation purposes is adding to the accumulation of arsenic in rice. Submerged conditions in the paddy fields further induce the prevalence of toxic inorganic arsenic species in the environment. Our genomics and transcriptomics-based study reveals how a rice pathogen is coping with the lethal concentrations of arsenic by acquiring a novel resistance cassette during diversification into lineages. Acquisition of such detoxification mechanisms can provide a selective advantage to the bacterial population in avoiding toxicity or enhancing virulence and to their on-going evolutionary events. While there are numerous studies on plant-pathogen-environment interactions, our study highlights the importance of systematic studies on the role of unique micro-environmental conditions on the evolution of host-adapted pathogens/microbes.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Andy Weiss ◽  
Christopher A. Lopez ◽  
William N. Beavers ◽  
Jhoana Rodriguez ◽  
Eric P. Skaar

Clostridioides difficile (formerly Clostridium difficile ) colonizes the gastrointestinal tract following disruption of the microbiota and can initiate a spectrum of clinical manifestations ranging from asymptomatic to life-threatening colitis. Following antibiotic treatment, luminal oxygen concentrations increase, exposing gut microbes to potentially toxic reactive oxygen species. Though typically regarded as a strict anaerobe, C. difficile can grow at low oxygen concentrations. How this bacterium adapts to a microaerobic environment and whether those responses to oxygen are conserved amongst strains is not entirely understood. Here, two C. difficile strains (630 and CD196) were cultured in 1.5% oxygen and the transcriptional response to long-term oxygen exposure was evaluated via RNA-sequencing. During growth in a microaerobic environment, several genes predicted to protect against oxidative stress were upregulated, including those for rubrerythrins and rubredoxins. Transcription of genes involved in metal homeostasis was also positively correlated with increased oxygen levels and these genes were amongst the most differentially transcribed. To directly compare the transcriptional landscape between C. difficile strains, a ‘consensus-genome’ was generated. On the basis of the identified conserved genes, basal transcriptional differences as well as variations in the response to oxygen were evaluated. While several responses were similar between the strains, there were significant differences in the abundance of transcripts involved in amino acid and carbohydrate metabolism. Furthermore, intracellular metal concentrations significantly varied both in an oxygen-dependent and oxygen-independent manner. Overall, these results indicate that C. difficile adapts to grow in a low oxygen environment through transcriptional changes, though the specific strategy employed varies between strains.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Rafał Kolenda ◽  
Katarzyna Sidorczuk ◽  
Mateusz Noszka ◽  
Adrianna Aleksandrowicz ◽  
Muhammad Moman Khan ◽  
...  

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli . Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


2021 ◽  
Vol 70 (8) ◽  
Author(s):  
József Sóki ◽  
Anikó Keszőcze ◽  
István Nagy ◽  
Katalin Burián ◽  
Elisabeth Nagy

Introduction. There are several β-lactamase genes described for Bacteroide s strains, of which cepA and cfiA are specific for Bacteroides fragilis and define two genetic divisions. The expression and phenotypic effects of these genes are usually regulated by insertional activation. Hypotheses/Gap Statement. Information is lacking about how cepA is regulated for most of the B. fragilis strains and whether there could be a genetic element for it. Aim. We aimed to investigate the molecular background of ampicillin (and other β-lactam) resistance among Bacteroides strains as mediated mainly by cepA and also to find a genetic element for it as known for cfiA. Methodology. Various PCR methods were used for β-lactamase-resistance gene and insertion sequence (IS) element detection in 42 Bacteroides strains. β-Lactamase activity measurements and antimicrobial-susceptibility testing using agar dilution were also applied. Further molecular experiments involved sequencing, gene targeting, Southern blotting and bioinformatic analyses. Results. We found that high antibiotic resistance and β-lactamase levels are brought about by insertional activation of the cepA gene or by similar or dissimilar activation of cfxA or cfiA, or by the newly described pbbA genes. Non-activated cepA genes produced low levels of specific β-lactamase activities that did not correlate with ampicillin resistance. We found a genetic element for cepA and another region close to it that are characteristic for division I B. fragilis strains, which are replaced by other sequences in division II B. fragilis strains. Conclusion. cepA usually is not activated by IS elements and usually produces low β-lactamase activities that do not correlate with the ampicillin MICs; therefore, it probably involves some non-β-lactamase-mediated resistance mechanism(s). pbpA is a newly described, effective β-lactamase gene that is located on a plasmid, and cepA resides on a well-defined chromosomal segment that is mutually replaced in division II B. fragilis strains. This latter finding demonstrates the genetic dichotomy of cepA–cfiA in B. fragilis and requires further investigation.


Microbiology ◽  
2020 ◽  
Vol 166 (11) ◽  
pp. 1038-1046 ◽  
Author(s):  
Hyuntae Byun ◽  
I-Ji Jung ◽  
Jiandong Chen ◽  
Jessie Larios Valencia ◽  
Jay Zhu

Vibrio cholerae, the aetiological agent of cholera, possesses multiple iron acquisition systems, including those for the transport of siderophores. How these systems benefit V. cholerae in low-iron, polymicrobial communities in environmental settings or during infection remains poorly understood. Here, we demonstrate that in iron-limiting conditions, co-culture of V. cholerae with a number of individual siderophore-producing microbes significantly promoted V. cholerae growth in vitro. We further show that in the host environment with low iron, V. cholerae colonizes better in adult mice in the presence of the siderophore-producing commensal Escherichia coli . Taken together, our results suggest that in aquatic reservoirs or during infection, V. cholerae may overcome environmental and host iron restriction by hijacking siderophores from other microbes.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin G. Sanchez ◽  
Micah J. Ferrell ◽  
Alexandra E. Chirakos ◽  
Kathleen R. Nicholson ◽  
Robert B. Abramovitch ◽  
...  

ABSTRACT Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772–E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum. Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression. IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


Sign in / Sign up

Export Citation Format

Share Document