scholarly journals Transient enhanced cell division by blocking DNA synthesis in Escherichia coli

Microbiology ◽  
2020 ◽  
Vol 166 (6) ◽  
pp. 516-521 ◽  
Author(s):  
Carmen Mata Martín ◽  
Arieh Zaritsky ◽  
Itzhak Fishov ◽  
Elena C. Guzmán

Duplication of the bacterial nucleoid is necessary for cell division hence specific arrest of DNA replication inhibits divisions culminating in filamentation, nucleoid dispersion and appearance of a-nucleated cells. It is demonstrated here that during the first 10 min however, Escherichia coli enhanced residual divisions: the proportion of constricted cells doubled (to 40%), nucleoids contracted and cells remodelled dimensions: length decreased and width increased. The preliminary data provides further support to the existence of temporal and spatial couplings between the nucleoid/replisome and the sacculus/divisome, and is consistent with the idea that bacillary bacteria modulate width during the division process exclusively.

2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


1980 ◽  
Vol 44 (1) ◽  
pp. 375-394
Author(s):  
N.N. Bobyleva ◽  
B.N. Kudrjavtsev ◽  
I.B. Raikov

The DNA content of isolated micronuclei, differentiating macronuclei (macronuclear Anlagen), and adult macronuclei of Loxodes magnus was measured cytofluorimetrically in preparations stained with a Schiff-type reagent, auramine-SO2, following hydrochloric acid hydrolysis. The DNA content of the youngest macronuclear Anlagen proved to be the same as that of telophasic micronuclei (2 c). The Anlagen thus differentiate from micronuclei which are still in G1. The quantity of DNA in the macronuclear Anlagen thereafter rises to the 4-c level, simultaneously with DNA replication in the micronuclei which immediately follows mitosis. In non-dividing animals most micronuclei are already in G2. Adult macronuclei here contain on average 1.5 times more DNA than the micronuclei; their DNA content is about 5–6 c (in some individual nuclei, up to 10 c). These data are consistent with autoradiographic evidence indicating a weak DNA synthesis in the macronuclei of Loxodes and make likely the existence of partial DNA replication (e.g. gene amplification) in the macronuclei. The DNA content of adult macronuclei isolated from dividing animals proved to be significantly smaller than that of macronuclei isolated from non-dividing specimens of the same clone. In 3 clones studied, the former value amounted on average to 71–79, 78 and 95% of the latter, respectively. This drop of DNA content cannot be explained by ‘dilution’ of the old macronuclei with newly formed ones. The quantity of DNA in adult macronuclei thus seems to undergo cyclical changes correlated with cytokinesis, despite the fact that, in Loxodes magnus, the macronuclei themselves never divide and are simply segregated at every cell division. The macronuclei of Loxodes can be termed paradiploid or hyperdiploid.


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Sathi Mallick ◽  
Shanti Kiran ◽  
Tapas Kumar Maiti ◽  
Anindya S. Ghosh

Escherichia coli low-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of Escherichia coli LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation. Therefore, this study includes the assessment of physiological characteristics of E. coli CS109 LMM PBP deletion mutants to address biofilm formation abilities, viability and surface adhesion. Finally, EPS from parent CS109 and its ΔPBP4 and ΔPBP5 mutants were purified and analysed for sugars present. Deletions of LMM PBP reduced biofilm formation, bacterial adhesion and their viability in biofilms. Deletions also diminished EPS production by ΔPBP4 and ΔPBP5 mutants, purification of which suggested an increased overall negative charge compared with their parent. Also, EPS analyses from both mutants revealed the appearance of an unusual sugar, xylose, that was absent in CS109. Accordingly, the reason for reduced biofilm formation in LMM PBP mutants may be speculated as the subsequent production of xylitol and a hindrance in the standard flow of the pentose phosphate pathway.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
James P. R. Connolly ◽  
Natasha C. A. Turner ◽  
Jennifer C. Hallam ◽  
Patricia T. Rimbi ◽  
Tom Flett ◽  
...  

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes – enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) – to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA – a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


2014 ◽  
Vol 111 (7) ◽  
pp. 2734-2739 ◽  
Author(s):  
B. Pimentel ◽  
R. Nair ◽  
C. Bermejo-Rodriguez ◽  
M. A. Preston ◽  
C. A. Agu ◽  
...  

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Sabine Schuster ◽  
Martina Vavra ◽  
Winfried V. Kern

ABSTRACTA major contribution of the resistance-nodulation-cell division (RND)-transporter AcrB to resistance to oxazolidinones and pleuromutilin derivatives inEscherichia coliwas confirmed. However, we discovered significant differences in efflux inhibitor activities, specificities of the homologous pump YhiV (MdtF), and the impact of AcrB pathway mutations. Particularly, entrance channel double-mutation I38F I671T and distal binding pocket mutation F615A revealed class-specific transport routes of oxazolidinones and pleuromutilin derivatives. The findings could contribute to the understanding of the RND-type multidrug transport pathways.


Parasitology ◽  
1993 ◽  
Vol 107 (2) ◽  
pp. 119-124 ◽  
Author(s):  
T. J. C. Beebee ◽  
A. L.-C. Wong

SUMMARYPrototheca richardsi, an unpigmented heterotrophic alga, causes growth inhibition in amphibian larvae and has proved refractory to culturein Vitro.P. richardsireplication is dependent on regular passaging through tadpole digestive systems; uptake of thymidine by free-livingProtothecacells and incorporation into DNA are very low by comparison with leucine uptake and incorporation into protein, but DNA synthesis is detectable in cells isolated from tadpole intestines. DNA replication was elicited 6–8 h after ingestion in protothecans fed to tadpoles and subsequently re-isolated from them, providing that the tadpoles were fed subsequent to the ingestion. It appears that passaging through tadpole intestines provides an essential stimulus to maintaining an active cell division cycle inP. richardsi.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Paola Bisicchia ◽  
Senthil Arumugam ◽  
Petra Schwille ◽  
David Sherratt

ABSTRACTBacterial cell division initiates with the formation of a ring-like structure at the cell center composed of the tubulin homolog FtsZ (the Z-ring), which acts as a scaffold for the assembly of the cell division complex, the divisome. Previous studies have suggested that the divisome is initially composed of FtsZ polymers stabilized by membrane anchors FtsA and ZipA, which then recruit the remaining division proteins. The MinCDE proteins prevent the formation of the Z-ring at poles by oscillating from pole to pole, thereby ensuring that the concentration of the Z-ring inhibitor, MinC, is lowest at the cell center. We show that prior to septum formation, the early-division proteins ZipA, ZapA, and ZapB, along with FtsZ, assemble into complexes that counter-oscillate with respect to MinC, and with the same period. We propose that FtsZ molecules distal from high concentrations of MinC form relatively slowly diffusing filaments that are bound by ZapAB and targeted to the inner membrane by ZipA or FtsA. These complexes may facilitate the early stages of divisome assembly at midcell. As MinC oscillates toward these complexes, FtsZ oligomerization and bundling are inhibited, leading to shorter or monomeric FtsZ complexes, which become less visible by epifluorescence microscopy because of their rapid diffusion. Reconstitution of FtsZ-Min waves on lipid bilayers shows that FtsZ bundles partition away from high concentrations of MinC and that ZapA appears to protect FtsZ from MinC by inhibiting FtsZ turnover.IMPORTANCEA big issue in biology for the past 100 years has been that of how a cell finds its middle. InEscherichia coli, over 20 proteins assemble at the cell center at the time of division. We show that the MinCDE proteins, which prevent the formation of septa at the cell pole by inhibiting FtsZ, drive the counter-oscillation of early-cell-division proteins ZapA, ZapB, and ZipA, along with FtsZ. We propose that FtsZ forms filaments at the pole where the MinC concentration is the lowest and acts as a scaffold for binding of ZapA, ZapB, and ZipA: such complexes are disassembled by MinC and reform within the MinC oscillation period before accumulating at the cell center at the time of division. The ability of FtsZ to be targeted to the cell center in the form of oligomers bound by ZipA and ZapAB may facilitate the early stages of divisome assembly.


2016 ◽  
Vol 198 (11) ◽  
pp. 1631-1644 ◽  
Author(s):  
Mark Itsko ◽  
Roel M. Schaaper

ABSTRACTOur laboratory recently discovered thatEscherichia colicells starved for the DNA precursor dGTP are killed efficiently (dGTP starvation) in a manner similar to that described for thymineless death (TLD). Conditions for specific dGTP starvation can be achieved by depriving anE. colioptA1 gptstrain of the purine nucleotide precursor hypoxanthine (Hx). To gain insight into the mechanisms underlying dGTP starvation, we conducted genome-wide gene expression analyses of actively growingoptA1 gptcells subjected to hypoxanthine deprivation for increasing periods. The data show that upon Hx withdrawal, theoptA1 gptstrain displays a diminished ability to derepress thede novopurine biosynthesis genes, likely due to internal guanine accumulation. The impairment in fully inducing thepurRregulon may be a contributing factor to the lethality of dGTP starvation. At later time points, and coinciding with cell lethality, strong induction of the SOS response was observed, supporting the concept of replication stress as a final cause of death. No evidence was observed in the starved cells for the participation of other stress responses, including therpoS-mediated global stress response, reinforcing the lack of feedback of replication stress to the global metabolism of the cell. The genome-wide expression data also provide direct evidence for increased genome complexity during dGTP starvation, as a markedly increased gradient was observed for expression of genes located near the replication origin relative to those located toward the replication terminus.IMPORTANCEControl of the supply of the building blocks (deoxynucleoside triphosphates [dNTPs]) for DNA replication is important for ensuring genome integrity and cell viability. When cells are starved specifically for one of the four dNTPs, dGTP, the process of DNA replication is disturbed in a manner that can lead to eventual death. In the present study, we investigated the transcriptional changes in the bacteriumE. coliduring dGTP starvation. The results show increasing DNA replication stress with an increased time of starvation, as evidenced by induction of the bacterial SOS system, as well as a notable lack of induction of other stress responses that could have saved the cells from cell death by slowing down cell growth.


2000 ◽  
Vol 20 (20) ◽  
pp. 7613-7623 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccharomyces cerevisiae andDrosophila spp., triggers exit from mitosis and during G1 prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference with the APC-Cdh1 dissociation at the G1/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G1/S transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27Kip1 cyclin-dependent kinase inhibitor. Consequently, failure to inactivate APC-Cdh1 beyond the G1/S transition not only inhibited productive cell division but also supported slow but uninterrupted DNA replication, precluding S-phase exit and causing massive overreplication of the genome. Our data suggest that timely oscillation of the APC-Cdh1 ubiquitin ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document