Characterization of the Porphyromonas gingivalis conjugative transposon CTnPg1: determination of the integration site and the genes essential for conjugal transfer

Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 2022-2032 ◽  
Author(s):  
Mariko Naito ◽  
Keiko Sato ◽  
Mikio Shoji ◽  
Hideharu Yukitake ◽  
Yoshitoshi Ogura ◽  
...  

In our previous study, extensive genomic rearrangements were found in two strains of the Gram-negative anaerobic bacterium Porphyromonas (Por.) gingivalis, and most of these rearrangements were associated with mobile genetic elements such as insertion sequences and conjugative transposons (CTns). CTnPg1, identified in Por. gingivalis strain ATCC 33277, was the first complete CTn reported for the genus Porphyromonas. In the present study, we found that CTnPg1 can be transferred from strain ATCC 33277 to another Por. gingivalis strain, W83, at a frequency of 10−7 to 10−6. The excision of CTnPg1 from the chromosome in a donor cell depends on an integrase (Int; PGN_0094) encoded in CTnPg1, whereas CTnPg1 excision is independent of PGN_0084 (a DNA topoisomerase I homologue; Exc) encoded within CTnPg1 and recA (PGN_1057) on the donor chromosome. Intriguingly, however, the transfer of CTnPg1 between Por. gingivalis strains requires RecA function in the recipient. Sequencing analysis of CTnPg1-integrated sites on the chromosomes of transconjugants revealed that the consensus attachment (att) sequence is a 13 bp sequence, TTTTCNNNNAAAA. We further report that CTnPg1 is able to transfer to two other bacterial species, Bacteroides thetaiotaomicron and Prevotella oralis. In addition, CTnPg1-like CTns are located in the genomes of other oral anaerobic bacteria, Porphyromonas endodontalis, Prevotella buccae and Prevotella intermedia, with the same consensus att sequence. These results suggest that CTns in the CTnPg1 family are widely distributed among oral anaerobic Gram-negative bacteria found in humans and play important roles in horizontal gene transfer among these bacteria.

Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 239 ◽  
Author(s):  
Tomasz M. Karpiński ◽  
Artur Adamczak

Fucoxanthin is a carotenoid produced by brown algae and diatoms. This compound has several biological properties such as antioxidant, anti-obesity, anti-diabetic, anticancer, and antimicrobial activities. Unfortunately, until now the latter effect has been poorly confirmed. The aim of this study was an evaluation of fucoxanthin activity against 20 bacterial species. Antimicrobial effect of fucoxanthin was determined by using the agar disc-diffusion and micro-dilution methods. The studied carotenoid acted against 13 bacteria growing in aerobic conditions. It was observed to have a significantly stronger impact on Gram-positive than Gram-negative bacteria. Mean zones of growth inhibition (ZOIs) for Gram-positive bacteria ranged between 9.0 and 12.2 mm, while for Gram-negative were from 7.2 to 10.2 mm. According to the agar disc-diffusion method, the highest activity of fucoxanthin was exhibited against Streptococcus agalactiae (mean ZOI 12.2 mm), Staphylococcus epidermidis (mean ZOI 11.2 mm), and Staphylococcus aureus (mean ZOI 11.0 mm), and in the microdilution test towards Streptococcus agalactiae with the minimal inhibitory concentration (MIC) of 62.5 µg/mL. On the other hand, fucoxanthin was not active against strict anaerobic bacteria.


2016 ◽  
Vol 3 (1) ◽  
pp. 43-48 ◽  
Author(s):  
V. Patyka ◽  
L. Butsenko ◽  
L. Pasichnyk

Aim. To validate the suitability of commercial API 20E test-system (bioMerieux) for the identifi cation and characterization of facultative gram-negative phytopathogenic bacterial isolates. Methods. Conventional mi- crobiological methods, API 20E test-system (bioMerieux) according to the manufacturer’s instructions. Re- sults. The identifi cation results for Erwinia amylovora, Pectobacterium carotovorum and Pantoea agglome- rans isolates were derived from the conventional and API 20E test systems, which, were in line with the literature data for these species. The API 20E test-system showed high suitability for P. agglomerans isolates identifi cation. Although not all the species of facultatively anaerobic phytopathogenic bacteria may be identi- fi ed using API 20E test-system, its application will surely allow obtaining reliable data about their physiologi- cal and biochemical properties, valuable for identifi cation of bacteria, in the course of 24 h. Conclusions. The results of tests, obtained for investigated species while using API 20E test-system, and those of conventional microbiological methods coincided. The application of API 20E test-system (bioMerieux) ensures fast obtain- ing of important data, which may be used to identify phytopathogenic bacteria of Erwinia, Pectobacterium, Pantoea genera.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 384
Author(s):  
Tessa de Block ◽  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Said Abdellati ◽  
Irith De Baetselier ◽  
...  

In this study, we characterized all oropharyngeal and anorectal isolates of Neisseria spp. in a cohort of men who have sex with men. This resulted in a panel of pathogenic Neisseria (N. gonorrhoeae [n = 5] and N. meningitidis [n = 5]) and nonpathogenic Neisseria (N. subflava [n = 11], N. mucosa [n = 3] and N. oralis [n = 2]). A high proportion of strains in this panel were resistant to azithromycin (18/26) and ceftriaxone (3/26). Whole genome sequencing (WGS) of these strains identified numerous mutations that are known to confer reduced susceptibility to azithromycin and ceftriaxone in N. gonorrhoeae. The presence or absence of these known mutations did not explain the high level resistance to azithromycin (>256 mg/L) in the nonpathogenic isolates (8/16). After screening for antimicrobial resistance (AMR) genes, we found a ribosomal protection protein, Msr(D), in these highly azithromycin resistant nonpathogenic strains. The complete integration site originated from Streptococcus pneumoniae and is associated with high level resistance to azithromycin in many other bacterial species. This novel AMR resistance mechanism to azithromycin in nonpathogenic Neisseria could be a public health concern if it were to be transmitted to pathogenic Neisseria. This study demonstrates the utility of WGS-based surveillance of nonpathogenic Neisseria.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 349
Author(s):  
Sien Ombelet ◽  
Alessandra Natale ◽  
Jean-Baptiste Ronat ◽  
Olivier Vandenberg ◽  
Liselotte Hardy ◽  
...  

Bacterial identification is challenging in low-resource settings (LRS). We evaluated the MicroScan identification panels (Beckman Coulter, Brea, CA, USA) as part of Médecins Sans Frontières’ Mini-lab Project. The MicroScan Dried Overnight Positive ID Type 3 (PID3) panels for Gram-positive organisms and Dried Overnight Negative ID Type 2 (NID2) panels for Gram-negative organisms were assessed with 367 clinical isolates from LRS. Robustness was studied by inoculating Gram-negative species on the Gram-positive panel and vice versa. The ease of use of the panels and readability of the instructions for use (IFU) were evaluated. Of species represented in the MicroScan database, 94.6% (185/195) of Gram-negative and 85.9% (110/128) of Gram-positive isolates were correctly identified up to species level. Of species not represented in the database (e.g., Streptococcus suis and Bacillus spp.), 53.1% out of 49 isolates were incorrectly identified as non-related bacterial species. Testing of Gram-positive isolates on Gram-negative panels and vice versa (n = 144) resulted in incorrect identifications for 38.2% of tested isolates. The readability level of the IFU was considered too high for LRS. Inoculation of the panels was favorably evaluated, whereas the visual reading of the panels was considered error-prone. In conclusion, the accuracy of the MicroScan identification panels was excellent for Gram-negative species and good for Gram-positive species. Improvements in stability, robustness, and ease of use have been identified to assure adaptation to LRS constraints.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Anthony S. Piro ◽  
Dulcemaria Hernandez ◽  
Sarah Luoma ◽  
Eric M. Feeley ◽  
Ryan Finethy ◽  
...  

ABSTRACT Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment. IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future. Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host’s actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic “glue trap,” capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna Kędzia ◽  
Andrzej W. Kędzia

Introduction. Abies whitebark (Abies sibirica L.) belonging to the family Pinaceae. The tree grown in Mongol, China and Siberian taiga. Produced the pichtae oil, which is obtained by hydrodistillation method. It contain: α-pinene, β-pinene, β-caryophyllene, bornyl acetate, camphene, mircene and cineole. The oil exhibiting expectorant, analgesic, anti-inflammatory, antialergic, liver restorative, adaptogenic and antioxidant properties. It has antimicrobial activity. Aim. The aim of the date was to determine the susceptibility of anaerobic bacteria isolated from patients to pichtae oil. Material and methods. The investigated 49 strains of bacteria isolated from patients from genus Bacteroides (7 strains), Parabacteroides (1), Prevotella (8), Porphyromonas (5), Tannerella (1), Fusobacterium (6), Finegoldia (4), Parvimonas (2), Peptostreptococcus (4), Actinomyces (4), Bifidobacterium (1), Propionibacterium (6), and 10 reference strains. The concentrations the oil were the following: 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 mg/ml. The pichtae oil was added to Brucella agar with 5% defibrynated sheep blood, menadione and hemin. Inoculum containing 106 CFU/ml was seeded with Steers replicator upon the agar with oil or without oil (strains growth control). The incubation was carried out in anaerobic jars containing 10% C02 , 10% H2 and 80% N2 , palladic catalyst and anaerobic indicator, at 37°C for 48 hrs. The MIC was defined as the lowest concentration of the pichtae oil that completely inhibited growth the anaerobic bacteria. Results. The results investigation indicated that from Gram-negative rods Tannerella forsythia (MIC = 5.0 mg/ml), Bacteroides fragilis and Bacteroides uniformis (MIC = 7.5 mg/ml) were the most susceptible to pichtae oil. The growth of Prevotella strains were inhibited by concentrations in ranges 5.0-15.0 mg/ml. The Prevotella bivia (MIC 10.0-15.0 mg/ml) and Prevotella buccalis (MIC = 15.0 mg/ml) were the most resistant. The tested oil was active on account genus of Fusobacterium strains in concentrations 5.0-10.0 mg/ml. The Gram-positive cocci were the more sensitive then rods. The growth was inhibited by concentrations in ranges ≤ 2.5-10.0 mg/ml. The oil was equally effective against Gram-positive rods (MIC ≤ 2.5-10.0 mg/ml). From this bacteria the more susceptible were the strains of Actinomyces (MIC ≤ 2.5-7.5 mg/ml) and the least a rods from genus of Bifidobacterium (MIC = 10.0 mg/ml). The date indicated, that the Gram-positive anaerobes were the more susceptible to pichtae oil than Gram-negative rods. Conclusions. From among the Gram-negative bacteria the more susceptible to pichtae oil were the rods from genus Tannerella forsythia, Bacteroides fragilis and Bacteroides uniformis. Gram-positive anaerobic cocci were the more susceptible then Gram-positive rods. The pichtae oil was the more active towards Gram-positive bacteria then Gram-negative anaerobic rods.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 367 ◽  
Author(s):  
Yuguang Liu ◽  
Dirk Schulze-Makuch ◽  
Jean-Pierre de Vera ◽  
Charles Cockell ◽  
Thomas Leya ◽  
...  

Single-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.


2018 ◽  
Vol 10 (464) ◽  
pp. eaal0033 ◽  
Author(s):  
Ahsan R. Akram ◽  
Sunay V. Chankeshwara ◽  
Emma Scholefield ◽  
Tashfeen Aslam ◽  
Neil McDonald ◽  
...  

Respiratory infections in mechanically ventilated patients caused by Gram-negative bacteria are a major cause of morbidity. Rapid and unequivocal determination of the presence, localization, and abundance of bacteria is critical for positive resolution of the infections and could be used for patient stratification and for monitoring treatment efficacy. Here, we developed an in situ approach to visualize Gram-negative bacterial species and cellular infiltrates in distal human lungs in real time. We used optical endomicroscopy to visualize a water-soluble optical imaging probe based on the antimicrobial peptide polymyxin conjugated to an environmentally sensitive fluorophore. The probe was chemically stable and nontoxic and, after in-human intrapulmonary microdosing, enabled the specific detection of Gram-negative bacteria in distal human airways and alveoli within minutes. The results suggest that pulmonary molecular imaging using a topically administered fluorescent probe targeting bacterial lipid A is safe and practical, enabling rapid in situ identification of Gram-negative bacteria in humans.


2006 ◽  
Vol 73 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Ashish A. Sawant ◽  
Narasimha V. Hegde ◽  
Beth A. Straley ◽  
Sarah C. Donaldson ◽  
Brenda C. Love ◽  
...  

ABSTRACT A study was conducted to understand the descriptive and molecular epidemiology of antimicrobial-resistant gram-negative enteric bacteria in the feces of healthy lactating dairy cattle. Gram-negative enteric bacteria resistant to ampicillin, florfenicol, spectinomycin, and tetracycline were isolated from the feces of 35, 8, 5, and 42% of 213 lactating cattle on 74, 39, 9, 26, and 82% of 23 farms surveyed, respectively. Antimicrobial-resistant gram-negative bacteria accounted for 5 (florfenicol) to 14% (tetracycline) of total gram-negative enteric microflora. Nine bacterial species were isolated, of which Escherichia coli (87%) was the most predominant species. MICs showing reduced susceptibility to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline were observed in E. coli isolates. Isolates exhibited resistance to ampicillin (48%), ceftiofur (11%), chloramphenicol (20%), florfenicol (78%), spectinomycin (18%), and tetracycline (93%). Multidrug resistance (≥3 to 6 antimicrobials) was seen in 40% of E. coli isolates from healthy lactating cattle. Of 113 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 93% of isolates, while the remaining 7% isolates carried the tet(A) determinant. DNA-DNA hybridization assays revealed that tet determinants were located on the chromosome. Pulsed-field gel electrophoresis revealed that tetracycline-resistant E. coli isolates (n = 99 isolates) belonged to 60 subtypes, which is suggestive of a highly diverse population of tetracycline-resistant organisms. On most occasions, E. coli subtypes, although shared between cows within the herd, were confined mostly to a dairy herd. The findings of this study suggest that commensal enteric E. coli from healthy lactating cattle can be an important reservoir for tetracycline and perhaps other antimicrobial resistance determinants.


Sign in / Sign up

Export Citation Format

Share Document