Determination of strain-specific wall teichoic acid structures in Lactobacillus plantarum reveals diverse α-d-glucosyl substitutions and high structural uniformity of the repeating units

Microbiology ◽  
2012 ◽  
Vol 158 (11) ◽  
pp. 2712-2723 ◽  
Author(s):  
Satoru Tomita ◽  
Kazuo Furihata ◽  
Naoto Tanaka ◽  
Eiichi Satoh ◽  
Tomoo Nukada ◽  
...  
2017 ◽  
Vol 5 (29) ◽  
Author(s):  
Thomas A. Kafka ◽  
Andreas J. Geissler ◽  
Rudi F. Vogel

ABSTRACT We report here the genome sequences of four Lactobacillus plantarum strains which vary in surface hydrophobicity. Bioinformatic analysis, using additional genomes of Lactobacillus plantarum strains, revealed a possible correlation between the cell wall teichoic acid-type and cell surface hydrophobicity and provide the basis for consecutive analyses.


2012 ◽  
Vol 11 (1) ◽  
pp. 123 ◽  
Author(s):  
Peter A Bron ◽  
Satoru Tomita ◽  
Iris I van Swam ◽  
Daniela M Remus ◽  
Marjolein Meijerink ◽  
...  

2016 ◽  
Vol 198 (21) ◽  
pp. 2925-2935 ◽  
Author(s):  
Heng Zhao ◽  
Yingjie Sun ◽  
Jason M. Peters ◽  
Carol A. Gross ◽  
Ethan C. Garner ◽  
...  

ABSTRACTThe integrity of the bacterial cell envelope is essential to sustain life by countering the high turgor pressure of the cell and providing a barrier against chemical insults. InBacillus subtilis, synthesis of both peptidoglycan and wall teichoic acids requires a common C55lipid carrier, undecaprenyl-pyrophosphate (UPP), to ferry precursors across the cytoplasmic membrane. The synthesis and recycling of UPP requires a phosphatase to generate the monophosphate form Und-P, which is the substrate for peptidoglycan and wall teichoic acid synthases. Using an optimizedclusteredregularlyinterspacedshortpalindromicrepeat (CRISPR) system with catalytically inactive (“dead”)CRISPR-associated protein9(dCas9)-based transcriptional repression system (CRISPR interference [CRISPRi]), we demonstrate thatB. subtilisrequires either of two UPP phosphatases, UppP or BcrC, for viability. We show that a third predicted lipid phosphatase (YodM), with homology to diacylglycerol pyrophosphatases, can also support growth when overexpressed. Depletion of UPP phosphatase activity leads to morphological defects consistent with a failure of cell envelope synthesis and strongly activates the σM-dependent cell envelope stress response, includingbcrC, which encodes one of the two UPP phosphatases. These results highlight the utility of an optimized CRISPRi system for the investigation of synthetic lethal gene pairs, clarify the nature of theB. subtilisUPP-Pase enzymes, and provide further evidence linking the σMregulon to cell envelope homeostasis pathways.IMPORTANCEThe emergence of antibiotic resistance among bacterial pathogens is of critical concern and motivates efforts to develop new therapeutics and increase the utility of those already in use. The lipid II cycle is one of the most frequently targeted processes for antibiotics and has been intensively studied. Despite these efforts, some steps have remained poorly defined, partly due to genetic redundancy. CRISPRi provides a powerful tool to investigate the functions of essential genes and sets of genes. Here, we used an optimized CRISPRi system to demonstrate functional redundancy of two UPP phosphatases that are required for the conversion of the initially synthesized UPP lipid carrier to Und-P, the substrate for the synthesis of the initial lipid-linked precursors in peptidoglycan and wall teichoic acid synthesis.


LWT ◽  
2016 ◽  
Vol 65 ◽  
pp. 884-889 ◽  
Author(s):  
Chengjie Ma ◽  
Guojun Cheng ◽  
Zhenmin Liu ◽  
Guangyu Gong ◽  
Zhengjun Chen

2017 ◽  
Vol 121 (16) ◽  
pp. 3925-3932 ◽  
Author(s):  
Manmilan Singh ◽  
James Chang ◽  
Lauryn Coffman ◽  
Sung Joon Kim

Sign in / Sign up

Export Citation Format

Share Document