scholarly journals Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells

2010 ◽  
Vol 91 (8) ◽  
pp. 1959-1970 ◽  
Author(s):  
Carsten Funke ◽  
Martin Farr ◽  
Bianca Werner ◽  
Sven Dittmann ◽  
Klaus Überla ◽  
...  

In viral myocarditis, adeno- and enteroviruses have most commonly been implicated as causes of infection. Both viruses require the human coxsackie-adenovirus receptor (CAR) to infect the myocardium. Due to its crucial role for viral entry, CAR-downregulation may lead to novel approaches for treatment for viral myocarditis. In this study, we report on pharmaceutical drug influences on CAR levels in human umbilical vein endothelial cells (HUVEC) and cervical carcinoma cells (HeLa) detected by immunoblotting, quantitative real time-PCR and cellular susceptibility to the cardiotropic coxsackie-B3 virus strain Nancy (CVB3). Our results indicate, for the first time, a dose-dependent CAR mRNA and protein downregulation upon Valsartan and Bosentan treatment. Most interestingly, drug-induced CAR diminution significantly reduced the viral load in CVB3-infected HUVEC. In order to assess the regulatory effects of both drugs in detail, we knocked down their protein targets, the G-protein coupled receptors angiotensin-II type-1 receptor (AT1R) and endothelin-1 type-A and -B receptors (ETAR/ETBR) in HUVEC. Receptor-specific gene silencing indicates that CAR gene expression is regulated by agonistic and antagonistic binding to ETBR, but not ETAR. In addition, neither stimulation nor inhibition of AT1R seemed to be involved in CAR gene regulatory processes. Our study indicates that Valsartan and Bosentan protected human endothelial cells from CVB3-infection. Therefore, besides their well-known anti-hypertensive effects these drugs may also protect the myocardium and other tissues from coxsackie- and adenoviral infection.

1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1995 ◽  
Vol 74 (02) ◽  
pp. 698-703 ◽  
Author(s):  
Catherine Lenich ◽  
Ralph Pannell ◽  
Victor Gurewich

SummaryFactor XII has long been implicated in the intrinsic pathway of fibrinolysis, but the mechanism by which it triggers plasminogen activation and targets fibrinolysis has not been established. In the present study, the assembly and function of activated Factor XII (F.XIIa), prourokinase (pro-u-PA), high molecular weight kininogen (H-kininogen), and prekallikrein on human umbilical vein endothelial cells (HUVEC) was investigated. 125I-prekallikrein was shown to bind to HUVEC via receptor-bound H-kininogen in the presence of 50 μM ZnCl2. After the addition of F.XIIa, 78% of the 125I-prekallikrein initially bound to HUVEC was converted to 125I-kallikrein. However, only 6% of the HUVEC-bound 125I-pro-u-PA was thereby activated. This discrepancy was shown to be related to rapid dissociation (>50% within 15 min) of prekallikrein/kallikrein, but not pro-u-PA, from HUVEC. Increasing the level of cell-bound kallikrein increased the portion of cell-bound pro-u-PA activated, indicating that their co-localization was important for this pathway. Finally, F.XIIa was shown to trigger plasminogen activation on HUVEC via this pathway. This assembly of reactants on the endothelium suggests a mechanism whereby local fibrinolysis may be triggered by blood coagulation.


1983 ◽  
Vol 49 (02) ◽  
pp. 069-072 ◽  
Author(s):  
U L H Johnsen ◽  
T Lyberg ◽  
K S Galdal ◽  
H Prydz

SummaryHuman umbilical vein endothelial cells in culture synthesize thromboplastin upon stimulation with phytohaemagglutinin (PHA) or the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The thromboplastin activity is further strongly enhanced in a time dependent reaction by the presence of gel-filtered platelets or platelet aggregates. This effect was demonstrable at platelet concentrations lower than those normally found in plasma, it may thus be of pathophysiological relevance. The thromboplastin activity increased with increasing number of platelets added. Cycloheximide inhibited the increase, suggesting that de novo synthesis of the protein component of thromboplastin, apoprotein III, is necessary.When care was taken to remove monocytes no thromboplastin activity and no apoprotein HI antigen could be demonstrated in suspensions of gel-filtered platelets, platelets aggregated with thrombin or homogenized platelets when studied with a coagulation assay and an antibody neutralization technique.


1986 ◽  
Vol 6 (8) ◽  
pp. 3018-3022
Author(s):  
B D Tong ◽  
S E Levine ◽  
M Jaye ◽  
G Ricca ◽  
W Drohan ◽  
...  

A clone containing the 3' end of the mRNA for the human c-sis gene (homologous to the B chain of platelet-derived growth factor) was isolated from a cDNA library derived from human umbilical vein endothelial cells and then sequenced. The analysis of possible translation products in all three reading frames indicated that the A chain of platelet-derived growth factor was not coded for within the 3' end of the c-sis mRNA. The 3' end of the mRNA for c-sis is contained in or adjacent to exon 6.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 131-134
Author(s):  
KS Callahan ◽  
A Schorer ◽  
JM Harlan

We examined the effect of highly purified platelet-derived growth factor (PDGF) on prostacyclin (PGI2) release by cultured human umbilical vein and bovine aortic endothelial cells. PDGF tested at concentrations equal to or exceeding those observed in serum did not increase endothelial cell PGI2 synthesis as measured by radioimmunoassay of its metabolite, 6-keto-PGF1 alpha. In contrast, cells incubated with 20% human whole blood serum (WBS) demonstrated significantly increased PGI2 production (fivefold stimulation). Addition of anti-PDGF antibody to the 20% WBS did not attenuate the increased synthesis of PGI2. Incubation with 20% plasma-derived serum (PDS) that was deficient in PDGF produced stimulation of PGI2 release similar to 20% WBS. These results demonstrate that PDGF does not cause increased PGI2 synthesis in cultured human endothelial cells of human or bovine origin, and further suggest that the stimulation observed with serum is not due to a platelet-release product.


2004 ◽  
Vol 164 (6) ◽  
pp. 811-817 ◽  
Author(s):  
Carlo Iomini ◽  
Karla Tejada ◽  
Wenjun Mo ◽  
Heikki Vaananen ◽  
Gianni Piperno

We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-α-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.


2018 ◽  
Vol 45 (5) ◽  
pp. 1878-1892 ◽  
Author(s):  
Xavier Vidal-Gómez ◽  
Daniel Pérez-Cremades ◽  
Ana Mompeón ◽  
Ana Paula Dantas ◽  
Susana Novella ◽  
...  

Background/Aims: Estrogen signalling plays an important role in vascular biology as it modulates vasoactive and metabolic pathways in endothelial cells. Growing evidence has also established microRNA (miRNA) as key regulators of endothelial function. Nonetheless, the role of estrogen regulation on miRNA profile in endothelial cells is poorly understood. In this study, we aimed to determine how estrogen modulates miRNA profile in human endothelial cells and to explore the role of the different estrogen receptors (ERα, ERβ and GPER) in the regulation of miRNA expression by estrogen. Methods: We used miRNA microarrays to determine global miRNA expression in human umbilical vein endothelial cells (HUVEC) exposed to a physiological concentration of estradiol (E2; 1 nmol/L) for 24 hours. miRNA-gene interactions were computationally predicted using Ingenuity Pathway Analysis and changes in miRNA levels were validated by qRT-PCR. Role of ER in the E2-induced miRNA was additionally confirmed by using specific ER agonists and antagonists. Results: miRNA array revealed that expression of 114 miRNA were significantly modified after E2 exposition. Further biological pathway analysis revealed cell death and survival, lipid metabolism, reproductive system function, as the top functions regulated by E2. We validated changes in the most significantly increased (miR-30b-5p, miR-487a-5p, miR-4710, miR-501-3p) and decreased (miR-378h and miR-1244) miRNA and the role of ER in these E2-induced miRNA was determined. Results showed that both classical, ERα and ERβ, and membrane-bound ER, GPER, differentially regulated specific miRNA. In silico analysis of validated miRNA promoters identified specific ER binding sites. Conclusion: Our findings identify differentially expressed miRNA pathways linked to E2 in human endothelial cells through ER, and provide new insights by which estrogen can modulate endothelial function.


1987 ◽  
Author(s):  
W Petraiuolo ◽  
E Bovill ◽  
J Hoak

Decreased endothelial cell production of prostacyclin (PGI2) in response to the lupus anticoagulant has been previously demonstrated, and postulated to have a causal relationship to the thrombotic events associated with the lupus anticoagulant. Five patients who exhibited the anticoagulant were studied in an effort to determine if a relationship exists between exposure of endothelial cells to the lupus anticoagulant and decreased production of prostacyclin (PGI2). Human endothelial cells derived from human umbilical vein grown in culture were exposed to IgG fractions of patient plasmas containing the lupus anticoagulant. The amount of PGI2 released was determined by radioimmunoassay for 6-keto-PGF-l-alpha. The average PGI2 release in the controls was 20.6 picomol/500,000 endothelial cells, whereas those cells exposed to the lupus anticoagulant had a range of 25 to 114 picmol/500,000 cells. We were unable to demonstrate inhibition of the release of PGI2 by human endothelial cells, following exposure to the lupus anticoagulant.(Supported by NIH Grant HL 33723-2 and a Specialized Center of Research in Thrombosis Award HL 35058-01 from the National Heart, Lung and Blood Institute.)


1988 ◽  
Vol 65 (3) ◽  
pp. 1372-1376 ◽  
Author(s):  
P. D. Thomas ◽  
F. W. Hampson ◽  
G. W. Hunninghake

The adult respiratory distress syndrome (ARDS) is frequently caused by exposure of the lung endothelium to circulating endotoxin (lipopolysaccharide, LPS) and pulmonary infections frequently develop during the course of ARDS. The present studies demonstrate that LPS and interleukin 1 (IL-1, a mediator released by endothelial cells after exposure to LPS) enhance the adherence of Staphylococcus aureus to human umbilical vein endothelial cells. gamma-Interferon, another mediator that induces expression of some cell surface antigens on endothelial cells, had no effect on bacterial adherence. The adherence of bacteria to endothelium was increased by prior opsonization of the bacteria with fresh human serum and was reduced by prior absorption of the serum with bacteria before the use of the serum for opsonization. The capacity of LPS to increase bacterial adherence was time dependent and was maximally expressed after 6 h of exposure; it was blocked by exposure of endothelial cells to LPS in the presence of reduced temperature or dactinomycin (Actinomycin D). These observations suggest that circulating LPS not only can trigger the development of ARDS but also may predispose the lung to the development of pulmonary infections by increasing adherence of bacteria to endothelium.


Sign in / Sign up

Export Citation Format

Share Document