scholarly journals Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination

2007 ◽  
Vol 88 (12) ◽  
pp. 3428-3438 ◽  
Author(s):  
Eyal Maori ◽  
Shai Lavi ◽  
Rita Mozes-Koch ◽  
Yulia Gantman ◽  
Yuval Peretz ◽  
...  

We report the isolation, purification, genome-sequencing and characterization of a picorna-like virus from dead bees in Israel. Sequence analysis indicated that IAPV (Israeli acute paralysis virus) is a distinct dicistrovirus. It is most homologous to Kashmir bee virus and acute bee paralysis virus. The virus carries a 9487 nt RNA genome in positive orientation, with two open reading frames separated by an intergenic region, and its coat comprises four major proteins, the sizes of which suggest alternate processing of the polyprotein. IAPV virions also carry shorter, defective-interfering (DI)-like RNAs. Some of these RNAs are recombinants of different segments of IAPV RNA, some are recombinants of IAPV RNA and RNA from another dicistrovirus, and yet others are recombinants of IAPV and non-viral RNAs. In several of the DI-like RNAs, a sense-oriented fragment has recombined with its complement, forming hairpins and stem–loop structures. In previous reports, we have shown that potyviral and IAPV sequences are integrated into the genome of their respective hosts. The dynamics of information exchange between virus and host and the possible resistance-engendering mechanisms are discussed.

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


2019 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Daisuke Miyazawa ◽  
Le Thi Ha Thanh ◽  
Akio Tani ◽  
Masaki Shintani ◽  
Nguyen Hoang Loc ◽  
...  

Geobacillus sp. JF8 is a thermophilic biphenyl and naphthalene degrader. To identify the naphthalene degradation genes, cis-naphthalene dihydrodiol dehydrogenase was purified from naphthalene-grown cells, and its N-terminal amino acid sequence was determined. Using a DNA probe encoding the N-terminal region of the dehydrogenase, a 10-kb DNA fragment was isolated. Upstream of nahB, a gene for dehydrogenase, there were two open reading frames which were designated as nahAc and nahAd, respectively. The products of nahAc and nahAd were predicted to be alpha and beta subunit of ring-hydroxylating dioxygenases, respectively. Phylogenetic analysis of amino acid sequences of NahB indicated that it did not belong to the cis-dihydrodiol dehydrogenase group that includes those of classical naphthalene degradation pathways. Downstream of nahB, four open reading frames were found, and their products were predicted as meta-cleavage product hydrolase, monooxygenase, dehydrogenase, and gentisate 1,2-dioxygenase, respectively. A reverse transcriptase-PCR analysis showed that transcription of nahAcAd was induced by naphthalene. These findings indicate that we successfully identified genes involved in the upper pathway of naphthalene degradation from a thermophilic bacterium.


2007 ◽  
Vol 62 (3-4) ◽  
pp. 285-295 ◽  
Author(s):  
Zoltán Bihari ◽  
Aladár Pettkó-Szandtner ◽  
Gyula Csanádi ◽  
Margit Balázs ◽  
Péter Bartos ◽  
...  

Abstract Strain AR-46, isolated and identified as Acinetobacter haemolyticus, evolutionally distant from the known hydrocarbon-degrading Acinetobacter spp., proved to have excellent longchain n-alkane-degrading ability. This is the first detailed report on an n-alkane-utilizing strain belonging to this species. The preferred substrate is n-hexadecane, with an optimal temperature of 37 °C under aerobic conditions. Five complete and two partial open reading frames were sequenced and correlated with the early steps of monoterminal oxidation-initiated n-alkane mineralization. The encoded protein sequences and the arrangement of these genes displayed high similarity to those found in Acinetobacter sp. M-1, but AR-46 seemed to have only one alkane hydroxylase gene, with a completely different induction profile. Unique behaviour was also observed in n-alkane bioavailability. Substrate uptake occurred through the hydrophobic surface of n-alkane droplet-adhered cells possessing long, thick fimbriae, which were presumed to play a major role in n-alkane solubilization. A majority of the cells was in detached form, with thick, but short fimbriae. These free cells were permanently hydrophilic, unlike the cells of other Acinetobacter strains.


1998 ◽  
Vol 180 (1) ◽  
pp. 178-181 ◽  
Author(s):  
Monique Odaert ◽  
Annie Devalckenaere ◽  
Patrick Trieu-Cuot ◽  
Michel Simonet

ABSTRACT The genome of Yersinia pestis, the causative agent of plague, contains at least 30 copies of an element, designated IS1541, which is structurally related to IS200(85% identity). One such element is inserted within the chromosomalinv gene (M. Simonet, B. Riot, N. Fortineau, and P. Berche, Infect. Immun. 64:375–379, 1996). We characterized other IS1541 insertions by cloning 14 different Y. pestis 6/69M loci carrying a single copy of this insertion sequence (IS) into Escherichia coli and, for each element, sequencing 250 bp of both flanking regions. In no case was this IS element inserted into large open reading frames; however, in eight cases, it was detected downstream (17 to 139 bp) of genes thought to be transcribed monocistronically or which constituted the last gene of an operon, and in only one case was it detected upstream (37 bp) of the first gene of an operon. Sequence analysis revealed stem-loop structures (ΔG, <−10 kcal) resembling rho-independent transcription terminators in 8 of the 14 insertion sites. These motifs might constitute hot spots for insertion of this IS1541element within the Y. pestis genome.


Microbiology ◽  
2000 ◽  
Vol 81 (2) ◽  
pp. 549-555 ◽  
Author(s):  
Ethan E. Strauss ◽  
Dilip K. Lakshman ◽  
Stellos M. Tavantzis

The bisegmented genome of a double-stranded (ds) RNA virus from the fungus Rhizoctonia solani isolate Rhs 717 was characterized. The larger segment, dsRNA 1, is 2363 bases long whereas the smaller segment, dsRNA 2, has 2206 bases. The 5′ ends of the coding strands of dsRNA 1 and dsRNA 2 are highly conserved (100% identity over 47 bases), and contain inverted repeats capable of forming stable stem–loop structures. Analysis of the coding potential of each of the two segments showed that dsRNAs 1 and 2 could code for polypeptides of 730 aa (bases 86–2275; molecular mass 86 kDa) and 683 aa (bases 79–2130; molecular mass 76 kDa), respectively. The 86 kDa polypeptide has all the motifs of dsRNA RNA-dependent RNA polymerases (RDRP), and has significant homology with putative RDRPs of partitiviruses from Fusarium poae and Atkinsonella hypoxylon. The 76 kDa protein shows homology with the putative capsid proteins (CP) of the same viruses. Northern blot analysis revealed no subgenomic RNA species, consistent with the fact that the long open reading frames encoding the putative RDRP and CP cover the entire length of the respective dsRNAs.


2020 ◽  
Author(s):  
Julie Stenberg Pedersen ◽  
Alexander Byth Carstens ◽  
Amaru Miranda Djurhuus ◽  
Witold Kot ◽  
Lars Hestbjerg Hansen

AbstractPectobacterium carotovorum is the causative agent of bacterial soft rot on various plant species. The use of phages for plant disease control have gained increased awareness over the past years. We here describe the isolation and characterization of Pectobacterium phage Jarilo, representing a novel genus of bacteriophages within the subfamily Autographivirinae. Jarilo possesses a double-stranded DNA genome of 40557 bp with a G+C% content of 50.08% and 50 predicted open reading frames (ORFs). Gene synteny and products seem to be somewhat conserved between Pectobacterium phage Jarilo and Enterobacteria phage T7, but limited nucleotide similarity is found between Jarilo and other phages within the subfamily Autographivirinae. We propose Pectobacterium phage Jarilo as the first member of a new genus of bacteriophages within the subfamily Autographivirinae.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Dong Zhang ◽  
Fang You ◽  
Yiliang He ◽  
Shu Harn Te ◽  
Karina Yew-Hoong Gin

ABSTRACT Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena. PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. Distinct from the majority of cyanophage isolates, PA-SR01 has a tailless morphology. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles. IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1115 ◽  
Author(s):  
Vera Morozova ◽  
Igor Babkin ◽  
Yuliya Kozlova ◽  
Ivan Baykov ◽  
Olga Bokovaya ◽  
...  

Klebsiella pneumoniae is a common pathogen, associated with a wide spectrum of infections, and clinical isolates of K. pneumoniae often possess multiple antibiotic resistances. Here, we describe a novel lytic N4-like bacteriophage KP8, specific to K. pneumoniae, including its genome, partial structural proteome, biological properties, and proposed taxonomy. Electron microscopy revealed that KP8 belongs to the Podoviridae family. The size of the KP8 genome was 73,679 bp, and it comprised 97 putative open reading frames. Comparative genome analysis revealed that the KP8 genome possessed the highest similarity to the genomes of Enquatrovirus and Gamaleyavirus phages, which are N4-like podoviruses. In addition, the KP8 genome showed gene synteny typical of the N4-like podoviruses and contained the gene encoding a large virion-encapsulated RNA polymerase. Phylogenetic analysis of the KP8 genome revealed that the KP8 genome formed a distinct branch within the clade, which included the members of Enquatrovirus and Gamaleyavirus genera besides KP8. The average evolutionary divergences KP8/Enquatrovirus and KP8/Gamaleyavirus were 0.466 and 0.447 substitutions per site (substitutes/site), respectively, similar to that between Enquatrovirus and Gamaleyavirus genera (0.468 substitutes/site). The obtained data suggested that Klebsiella phage KP8 differs from other similar phages and may represent a new genus within the N4-like phages.


Sign in / Sign up

Export Citation Format

Share Document