scholarly journals Isolation and Characterization of a Novel Klebsiella pneumoniae N4-like Bacteriophage KP8

Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1115 ◽  
Author(s):  
Vera Morozova ◽  
Igor Babkin ◽  
Yuliya Kozlova ◽  
Ivan Baykov ◽  
Olga Bokovaya ◽  
...  

Klebsiella pneumoniae is a common pathogen, associated with a wide spectrum of infections, and clinical isolates of K. pneumoniae often possess multiple antibiotic resistances. Here, we describe a novel lytic N4-like bacteriophage KP8, specific to K. pneumoniae, including its genome, partial structural proteome, biological properties, and proposed taxonomy. Electron microscopy revealed that KP8 belongs to the Podoviridae family. The size of the KP8 genome was 73,679 bp, and it comprised 97 putative open reading frames. Comparative genome analysis revealed that the KP8 genome possessed the highest similarity to the genomes of Enquatrovirus and Gamaleyavirus phages, which are N4-like podoviruses. In addition, the KP8 genome showed gene synteny typical of the N4-like podoviruses and contained the gene encoding a large virion-encapsulated RNA polymerase. Phylogenetic analysis of the KP8 genome revealed that the KP8 genome formed a distinct branch within the clade, which included the members of Enquatrovirus and Gamaleyavirus genera besides KP8. The average evolutionary divergences KP8/Enquatrovirus and KP8/Gamaleyavirus were 0.466 and 0.447 substitutions per site (substitutes/site), respectively, similar to that between Enquatrovirus and Gamaleyavirus genera (0.468 substitutes/site). The obtained data suggested that Klebsiella phage KP8 differs from other similar phages and may represent a new genus within the N4-like phages.

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Jun Kwon ◽  
Sang Guen Kim ◽  
Hyoun Joong Kim ◽  
Sib Sankar Giri ◽  
Sang Wha Kim ◽  
...  

The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.


2007 ◽  
Vol 6 (11) ◽  
pp. 2102-2111 ◽  
Author(s):  
Javier Botet ◽  
Laura Mateos ◽  
José L. Revuelta ◽  
María A. Santos

ABSTRACT Large-scale phenotypic analyses have proved to be useful strategies in providing functional clues about the uncharacterized yeast genes. We used here a chemogenomic profiling of yeast deletion collections to identify the core of cellular processes challenged by treatment with the p-aminobenzoate/folate antimetabolite sulfanilamide. In addition to sulfanilamide-hypersensitive mutants whose deleted genes can be categorized into a number of groups, including one-carbon related metabolism, vacuole biogenesis and vesicular transport, DNA metabolic and cell cycle processes, and lipid and amino acid metabolism, two uncharacterized open reading frames (YHI9 and YMR289w) were also identified. A detailed characterization of YMR289w revealed that this gene was required for growth in media lacking p-aminobenzoic or folic acid and encoded a 4-amino-4-deoxychorismate lyase, which is the last of the three enzymatic activities required for p-aminobenzoic acid biosynthesis. In light of these results, YMR289w was designated ABZ2, in accordance with the accepted nomenclature. ABZ2 was able to rescue the p-aminobenzoate auxotrophy of an Escherichia coli pabC mutant, thus demonstrating that ABZ2 and pabC are functional homologues. Phylogenetic analyses revealed that Abz2p is the founder member of a new group of fungal 4-amino-4-deoxychorismate lyases that have no significant homology to its bacterial or plant counterparts. Abz2p appeared to form homodimers and dimerization was indispensable for its catalytic activity.


2019 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Daisuke Miyazawa ◽  
Le Thi Ha Thanh ◽  
Akio Tani ◽  
Masaki Shintani ◽  
Nguyen Hoang Loc ◽  
...  

Geobacillus sp. JF8 is a thermophilic biphenyl and naphthalene degrader. To identify the naphthalene degradation genes, cis-naphthalene dihydrodiol dehydrogenase was purified from naphthalene-grown cells, and its N-terminal amino acid sequence was determined. Using a DNA probe encoding the N-terminal region of the dehydrogenase, a 10-kb DNA fragment was isolated. Upstream of nahB, a gene for dehydrogenase, there were two open reading frames which were designated as nahAc and nahAd, respectively. The products of nahAc and nahAd were predicted to be alpha and beta subunit of ring-hydroxylating dioxygenases, respectively. Phylogenetic analysis of amino acid sequences of NahB indicated that it did not belong to the cis-dihydrodiol dehydrogenase group that includes those of classical naphthalene degradation pathways. Downstream of nahB, four open reading frames were found, and their products were predicted as meta-cleavage product hydrolase, monooxygenase, dehydrogenase, and gentisate 1,2-dioxygenase, respectively. A reverse transcriptase-PCR analysis showed that transcription of nahAcAd was induced by naphthalene. These findings indicate that we successfully identified genes involved in the upper pathway of naphthalene degradation from a thermophilic bacterium.


2007 ◽  
Vol 62 (3-4) ◽  
pp. 285-295 ◽  
Author(s):  
Zoltán Bihari ◽  
Aladár Pettkó-Szandtner ◽  
Gyula Csanádi ◽  
Margit Balázs ◽  
Péter Bartos ◽  
...  

Abstract Strain AR-46, isolated and identified as Acinetobacter haemolyticus, evolutionally distant from the known hydrocarbon-degrading Acinetobacter spp., proved to have excellent longchain n-alkane-degrading ability. This is the first detailed report on an n-alkane-utilizing strain belonging to this species. The preferred substrate is n-hexadecane, with an optimal temperature of 37 °C under aerobic conditions. Five complete and two partial open reading frames were sequenced and correlated with the early steps of monoterminal oxidation-initiated n-alkane mineralization. The encoded protein sequences and the arrangement of these genes displayed high similarity to those found in Acinetobacter sp. M-1, but AR-46 seemed to have only one alkane hydroxylase gene, with a completely different induction profile. Unique behaviour was also observed in n-alkane bioavailability. Substrate uptake occurred through the hydrophobic surface of n-alkane droplet-adhered cells possessing long, thick fimbriae, which were presumed to play a major role in n-alkane solubilization. A majority of the cells was in detached form, with thick, but short fimbriae. These free cells were permanently hydrophilic, unlike the cells of other Acinetobacter strains.


2007 ◽  
Vol 88 (12) ◽  
pp. 3428-3438 ◽  
Author(s):  
Eyal Maori ◽  
Shai Lavi ◽  
Rita Mozes-Koch ◽  
Yulia Gantman ◽  
Yuval Peretz ◽  
...  

We report the isolation, purification, genome-sequencing and characterization of a picorna-like virus from dead bees in Israel. Sequence analysis indicated that IAPV (Israeli acute paralysis virus) is a distinct dicistrovirus. It is most homologous to Kashmir bee virus and acute bee paralysis virus. The virus carries a 9487 nt RNA genome in positive orientation, with two open reading frames separated by an intergenic region, and its coat comprises four major proteins, the sizes of which suggest alternate processing of the polyprotein. IAPV virions also carry shorter, defective-interfering (DI)-like RNAs. Some of these RNAs are recombinants of different segments of IAPV RNA, some are recombinants of IAPV RNA and RNA from another dicistrovirus, and yet others are recombinants of IAPV and non-viral RNAs. In several of the DI-like RNAs, a sense-oriented fragment has recombined with its complement, forming hairpins and stem–loop structures. In previous reports, we have shown that potyviral and IAPV sequences are integrated into the genome of their respective hosts. The dynamics of information exchange between virus and host and the possible resistance-engendering mechanisms are discussed.


2020 ◽  
Author(s):  
Jacob B Jørgensen ◽  
Amaru M Djuurhus ◽  
Alexander B. Carstens ◽  
Witold Kot ◽  
Cindy E. Morris ◽  
...  

AbstractThree phages targeting Pseudomonas syringae GAW0113 have been isolated from organic waste samples: Pseudomonas phage Bertil, Misse and Strit. The phages have double-stranded DNA genomes ranging from 41342 to 41374 bp in size comprising 50 to 51 open reading frames. The three phages genomes are highly similar and genomic comparison analyses shows that they all belong to the Autographivirinae subfamily of the family Podoviridae. The phages are however only distantly related to other members of this family, and have limited gene synteny with type-phages of other genera within Autographivirinae, suggesting that the newly isolated phages could represent a new genus.


2020 ◽  
Author(s):  
Julie Stenberg Pedersen ◽  
Alexander Byth Carstens ◽  
Amaru Miranda Djurhuus ◽  
Witold Kot ◽  
Lars Hestbjerg Hansen

AbstractPectobacterium carotovorum is the causative agent of bacterial soft rot on various plant species. The use of phages for plant disease control have gained increased awareness over the past years. We here describe the isolation and characterization of Pectobacterium phage Jarilo, representing a novel genus of bacteriophages within the subfamily Autographivirinae. Jarilo possesses a double-stranded DNA genome of 40557 bp with a G+C% content of 50.08% and 50 predicted open reading frames (ORFs). Gene synteny and products seem to be somewhat conserved between Pectobacterium phage Jarilo and Enterobacteria phage T7, but limited nucleotide similarity is found between Jarilo and other phages within the subfamily Autographivirinae. We propose Pectobacterium phage Jarilo as the first member of a new genus of bacteriophages within the subfamily Autographivirinae.


1999 ◽  
Vol 181 (10) ◽  
pp. 3284-3287 ◽  
Author(s):  
Marta Erra-Pujada ◽  
Philippe Debeire ◽  
Francis Duchiron ◽  
Michael J. O’Donohue

ABSTRACT The gene encoding a hyperthermostable type II pullulanase produced by Thermococcus hydrothermalis (Th-Apu) has been isolated. Analysis of a total of 5.2 kb of genomic DNA has revealed the presence of three open reading frames, one of which (apuA) encodes the pullulanase. This enzyme is composed of 1,339 amino acid residues and exhibits a multidomain structure. In addition to a typical N-terminal signal peptide, Th-Apu possesses a catalytic domain, a domain bearing S-layer homology-like motifs, a Thr-rich region, and a potential C-terminal transmembrane domain. The presence of these noncatalytic domains suggests that Th-Apu may be anchored to the cell surface and be O glycosylated.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Dong Zhang ◽  
Fang You ◽  
Yiliang He ◽  
Shu Harn Te ◽  
Karina Yew-Hoong Gin

ABSTRACT Cyanobacteria are the major primary producers in both freshwater and marine environments. However, the majority of freshwater cyanophages remain unknown due to the limited number of cyanophage isolates. In this study, we present a novel lytic freshwater cyanophage, PA-SR01, which was isolated from the Singapore Serangoon Reservoir. To our knowledge, this is the first isolate of a cyanophage that has been found to infect the cyanobacterium Pseudanabaena. PA-SR01 has a narrow host range, a short latent period, and is chloroform sensitive. Distinct from the majority of cyanophage isolates, PA-SR01 has a tailless morphology. It is a double-stranded DNA virus with a 137,012-bp genome. Functional annotation for the predicted open reading frames (ORFs) of the PA-SR01 genome identified genes with putative functions related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Out of 166 predicted ORFs, only 17 ORFs have homology with genes with known function. Phylogenetic analysis of the major capsid protein and terminase large subunit further suggests that phage PA-SR01 is evolutionary distinct from known cyanophages. Metagenomics sequence recruitment onto the PA-SR01 genome indicates that PA-SR01 represents a new evolutionary lineage of phage which shares considerable genetic similarities with phage sequences in aquatic environments and could play key ecological roles. IMPORTANCE This study presents the isolation of the very first freshwater cyanophage, PA-SR01, that infects Pseudanabaena, and fills an important knowledge gap on freshwater cyanophages as well as cyanophages infecting Pseudanabaena.


2005 ◽  
Vol 187 (11) ◽  
pp. 3889-3893 ◽  
Author(s):  
Ilya V. Manukhov ◽  
Daria V. Mamaeva ◽  
Sergei M. Rastorguev ◽  
Nicolai G. Faleev ◽  
Elena A. Morozova ◽  
...  

ABSTRACT Citrobacter freundii cells produce l-methionine γ-lyase when grown on a medium containing l-methionine. The nucleotide sequence of the hybrid plasmid with a C. freundii EcoRI insert of about 3.0 kbp contained two open reading frames, consisting of 1,194 nucleotides and 1,296 nucleotides, respectively. The first one (denoted megL) encoded l-methionine γ-lyase. The enzyme was overexpressed in Escherichia coli and purified. The second frame encoded a protein belonging to the family of permeases. Regions of high sequence identity with the 3′-terminal part of the C. freundii megL gene located in the same regions of Salmonella enterica serovar Typhimurium, Shigella flexneri, E. coli, and Citrobacter rodentium genomes were found.


Sign in / Sign up

Export Citation Format

Share Document