bacillus subtilis natto
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 32)

H-INDEX

25
(FIVE YEARS 4)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 306
Author(s):  
Yukun Zhang ◽  
Manabu Ishikawa ◽  
Shunsuke Koshio ◽  
Saichiro Yokoyama ◽  
Serge Dossou ◽  
...  

This study aimed to improve the nutritional value of soybean meal (SBM) by solid-state fermentation (SSF) using Bacillus subtilis natto (B. s. natto) to overcome the limitations of SBM usage in aquafeed. The response surface methodology (RSM) was employed to explore the relationships of fermentation conditions, such as temperature, time, water-substrate ratio, and layer thickness, on the degree of protein hydrolysis (DH) and the crude protein (CP) content. The optimum conditions for achieving the higher DH (15.96%) and CP (55.76%) were 43.82 °C, 62.32 h, 1.08 of water-substrate ratio, and a layer thickness of 2.02 cm. CP and DH in the fermented soybean meal (FSM) increased by 9.8% and 177.1%, respectively, and crude fiber decreased by 14.1% compared to SBM. The protein dispersibility index (PDI) decreased by 29.8%, while KOH protein solubility (KPS) was significantly increased by 17.4%. Flavonoids and total phenolic acid content in FSM were increased by 231.0% and 309.4%, respectively. Neutral protease activity (NPA) also reached a high level (1723.6 U g−1). Total essential amino acids (EAA) in FSM increased by 12.2%, higher than the 10.8% increase of total non-essential amino acids (NEAA), while the total free amino acids content was 12.76 times higher than that of SBM. Major anti-nutritional factors in SBM were significantly reduced during the process, and almost all SBM protein macromolecules were decomposed. Together with the cost-effectiveness of SSF, B. s. natto-fermented SBM products have great potential to improve the plant composition and replace high-cost ingredients in aquafeed, contributing to food security and environmental sustainability.


Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 446-452
Author(s):  
E.W.C. Chan ◽  
S.K. Wong ◽  
M. Kezuka ◽  
N. Oshiro ◽  
H.T. Chan

Natto and miso are two major traditional fermented soy foods in Japan. Natto is prepared by fermenting cooked soybeans with Bacillus subtilis natto. The beans of natto have a sticky outlook, slippery texture, sour aroma and nutty flavour. Bioactive components of natto are nattokinase, bacillopeptidase F, vitamin K2, dipicolinic acid and γ-polyglutamic acid. Miso is a fermented soybean paste widely used to make miso soup. The paste is produced by fermenting cooked soybeans with koji (steamed rice inoculated with Aspergillus oryzae). Bioactive compounds of miso include isoflavones and phenolic acids. In this review, the preparation, bioactive components, and health-promoting properties of natto and miso are highlighted. Sources of information referred were from Google Scholar, J-Stage, Science Direct, PubMed, PubMed Central and PubChem


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1519
Author(s):  
Meinan Chang ◽  
Fengtao Ma ◽  
Jingya Wei ◽  
Junhao Liu ◽  
Xuemei Nan ◽  
...  

Previous studies have shown that Bacillus subtilis natto affects rumen fermentation and rumen microbial community structure, which are limited to detect a few microbial abundances using traditional methods. However, the regulation of B. subtilis natto on rumen microorganisms and the mechanisms of microbiota that affect rumen fermentation is still unclear. This study explored the effects of live and autoclaved B. subtilis natto on ruminal microbial composition and diversity in vitro using 16S rRNA gene sequencing and the underlying mechanisms. Rumen fluid was collected, allocated to thirty-six bottles, and divided into three treatments: CTR, blank control group without B. subtilis natto; LBS, CTR with 109 cfu of live B. subtilis natto; and ABS, CTR with 109 cfu of autoclaved B. subtilis natto. The rumen fluid was collected after 0, 6, 12, and 24 h of fermentation, and pH, ammonia nitrogen (NH3-N), microbial protein (MCP), and volatile fatty acids (VFAs) were determined. The diversity and composition of rumen microbiota were assessed by 16S rRNA gene sequencing. The results revealed LBS affected the concentrations of NH3-N, MCP, and VFAs (p < 0.05), especially after 12 h, which might be attributed to changes in 18 genera. Whereas ABS only enhanced pH and NH3-N concentration compared with the CTR group (p < 0.05), which might be associated with changes in six genera. Supplementation with live B. subtilis natto improved ruminal NH3-N and propionate concentrations, indicating that live bacteria were better than autoclaved ones. This study advances our understanding of B. subtilis natto in promoting ruminal fermentation, providing a new perspective for the precise utilization of B. subtilis natto in dairy rations.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2985
Author(s):  
Beata Koim-Puchowska ◽  
Grzegorz Kłosowski ◽  
Joanna Maria Dróżdż-Afelt ◽  
Dawid Mikulski ◽  
Alicja Zielińska

An effective microbial synthesis of surfactin depends on the composition of the culture medium, the culture conditions and the genetic potential of the producer strain. The aim of this study was to evaluate the suitability of various medium components for the surfactin producing strain and to determine the impact of the culture conditions on the biosynthesis of surfactin isoforms by the newly isolated native strain Bacillus subtilis natto BS19. The efficiency of surfactin biosynthesis was determined by measuring the surface tension of the medium before and after submerged culture (SmF) and by qualitative and quantitative analysis of the obtained compound by high performance liquid chromatography. The highest efficiency of surfactin biosynthesis was achieved using starch as the carbon source and yeast extract as the nitrogen source at pH 7.0 and 37 °C. Potato peelings were selected as an effective waste substrate. It was shown that the increase in the percentage of peel extract in the culture medium enhanced the biosynthesis of surfactin (mg/L) (2–30.9%; 4–46.0% and 6–58.2%), while reducing surface tension of the medium by about 50%. The obtained results constitute a promising basis for further research on biosynthesis of surfactin using potato peelings as a cheap alternative to synthetic medium components.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Min Li ◽  
Zilong Zhang ◽  
Shenwei Li ◽  
Zhengan Tian ◽  
Xia Ma

AbstractPoly-γ-glutamic acid (γ-PGA) and nattokinase (NK) are the main substances produced by Bacillus subtilis natto in solid-state fermentation and have wide application prospects. We found that our strains had higher activity of nattokinase when soybeans were used as substrate to increase the yield of γ-PGA. Commercial production of γ-PGA and nattokinase requires an understanding of the mechanism of co-production. Here, we obtained the maximum γ-PGA yield (358.5 g/kg, w/w) and highest activity of NK during fermentation and analyzed the transcriptome of Bacillus subtilis natto during co-production of γ-PGA and NK. By comparing changes in expression of genes encoding key enzymes and the metabolic pathways associated with the products in genetic engineering, the mechanism of co-production of γ-PGA and nattokinase can be summarized based on RNA-seq analysis. This study firstly provides new insights into the mechanism of co-production of γ-PGA and nattokinase by Bacillus subtilis natto and reveals potential molecular targets to promote the co-production of γ-PGA and nattokinase.


2021 ◽  
Vol 150 ◽  
pp. 112020
Author(s):  
Hsin-Yu Chou ◽  
Li-Heng Liu ◽  
Chung-Yi Chen ◽  
I-Fan Lin ◽  
Daoud Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document