scholarly journals Postimplantation Whole Embryo Culture Assay for Hamsters: An Alternative to Rat and Mouse

2001 ◽  
Vol 1 ◽  
pp. 227-234 ◽  
Author(s):  
Bogdan Wlodarczyk ◽  
Bogumil Biernacki ◽  
Maria Minta ◽  
Jan Zmudzki

Postimplantation whole embryo culture (WEC) assay for rats and mice has been well established and introduced to many laboratories. Recently WEC technique for rabbits has been developed; however, information on culture of other species is very limited. Knowing the usefulness of hamsters in classical embryotoxicology, we reasoned that hamster WEC could be an alternative model for the most frequently used rat and mouse WEC. Previously we have optimized culture conditions for postimplantation hamster embryos. The aim of this study was to test the susceptibility of hamster embryos cultured in vitro to embryotoxic compounds and to compare our results with those reported by others on rat or mouse embryo culture. For that purpose we choose three known embryotoxic compounds�valproic acid, cadmium chloride, and diethylstilbestrol�and tested them using a postimplantation hamster whole embryo culture assay. Hamster embryos were cultured from 7.5 days gestation for 24 h in a medium consisting of 35% hamster serum and 65% synthetic culture medium (Iscove�s or McCoy 5A). At the end of the culture period, the embryos were examined morphologically, measured with the aid of a computer image analysis system, and total protein content was assessed. All three compounds exhibited dose-related embryotoxic and teratogenic effects in hamster embryos. The malformations observed were similar to those reported on rat and mouse embryos. Comparison of the results with data reported by other authors indicates that hamster embryos cultured in vitromight be more susceptible to embryotoxic stimuli than rat and mouse embryos.

2022 ◽  
Vol 53 (5) ◽  
Author(s):  
Ivana Kmetič ◽  
Monika Roller ◽  
Marina Miletić ◽  
Teuta Murati

U toksikološkim istraživanjima uz uporabu klasičnih (in vivo) istraživanja, primjenjuju se alternativni test sustavi. Korištenje laboratorijskih životinja, embrija, humanog i animalnog tkiva, kultura stanica i fetalnog seruma u istraživanjima smatra se etički problematičnim te se ograničava zakonima, pravilnicima i praksom. Razmatranjem načina kojima bi se neetičnost mogla izbjeći, došlo je do razvoja “3R” načela (akronim za tri pristupa koja bi se trebala provoditi pri istraživanjima na laboratorijskim životinjama), a to su: smanjenje/racionalizacija uporabe laboratorijskih životinja (engl. Reduction), načelo njihove zamjene (engl. Replacement) i poboljšanje uvjeta uzgoja, smještaja i skrbi za životinje (engl. Refinement). Većina je alternativnih testova toksičnosti još uvijek u postupku validacije. Pojedini in vitro testovi za istraživanja embriotoksičnosti (etički posebno osjetljivo područje) koja su priznala nadležna regulatorna tijela, su EST (engl. Embryonic Stem cell Test), WEC (engl. Whole- Embryo Culture) i MM (engl. MicroMass) test. Standardizacija protokola i uvođenje novih in vitro modela predstavlja važan segment napretka u toksikološkim istraživanjima. Znanstvena budućnost tu vidi mogućnost razvoja i implementacije načela etičnosti u istraživanja primjenjujući sustave koji će promišljeno i bez korištenja živih organizama dijelom nadomjestiti metode u biomedicini, veterinarskoj medicini, biotehnologiji i užem smislu - toksikologiji i farmakologiji.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
E Mestres ◽  
Q Matia-Algué ◽  
A Villamar ◽  
M García-Jiménez ◽  
A Casals ◽  
...  

Abstract Study question Do commercial mineral oil brands differ in their capacity to stabilize the human embryo culture system, and is this related to the oil’s viscosity? Summary answer While the oils’ viscosity only had minor effects on temperature maintenance, it showed a direct correlation with the stability of pH and osmolality during culture. What is known already Mineral oil is a key component of the in vitro embryo culture system, which stabilizes temperature, pH and osmolality of the media during culture. Its use has been implemented worldwide for several decades and many manufacturers currently produce and commercialize oil intended for human embryo culture. Unfortunately, oil remains as one of the less characterized products in the IVF laboratory due to a lack of standardized nomenclature, production and testing. With differing physico-chemical properties, such as viscosity, oils produced by various manufacturers could behave differently to the same culture conditions and, thus, its use may need to be adjusted accordingly. Study design, size, duration Viscosity was quantified in three high-viscosity (H-V) and three low-viscosity (L-V) oils with a viscosity-meter. The required time for media’s pH to equilibrate using each oil was studied, as well as its subsequent stability outside the incubator for 30min. In-drop temperature was assessed during 15min when taking a dish outside the incubator, and again when putting it back. Additionally, each oil’s capacity to avoid media evaporation was studied with daily osmolality measurements during 7 days. Participants/materials, setting, methods pH equilibration was measured with a continuous pHmeter (Log&Guard, Vitrolife) in 4-well dishes prepared with 600µl of medium and 500µl of oil. For the other experiments, 35mm dishes with 4ml of oil and 20µl media droplets were used. pH stability was assessed after 0, 15 and 30min outside the incubator with a blood-gas-analyzer (epoc,SiemensHelthineers). A fine-gauge thermocouple was used to measure in-drop temperature loss/recovery. Daily osmolality readings were taken with a vapor pressure osmometer (Vapro5600,Wescor). Main results and the role of chance The selected oil samples had a viscosity of 115, 111, 52, 22, 18, and 12cP. The medium’s pH took approximately 12h to completely equilibrate under H-V oils, while it took less than 4h in L-V. Similarly, the rise in pH after 30min on a heated stage outside of the incubator with room atmosphere was 0.03, 0.04, 0.06, 0.13, 0.17, and 0.26, respectively. Dishes were taken out of the incubator and placed on a heated surface. In the first five minutes, the in-drop temperature loss ranged between –0.22 and –0.13oC/min, with no significant differences observed between oil types. However, temperature plateaued at a significantly higher value in L-V oils (36.5oC), compared to H-V brands (36.25–36.1oC; p = 0.0005). By contrast, all samples followed a similar pattern when the dishes were returned to the benchtop incubator, with temperature taking around 7 minutes to completely recover. Some media evaporated in all oil groups during the 7-day culture in a dry benchtop incubator. The linear regression performed to compare the evaporation rate between groups showed a statistically significant correlation between oil viscosity and the rate of evaporation (p < 0.0001), with an osmolality rise ranging between +2.55mmol/kg/day in the most viscous oil and +6.29mmol/kg/day in the least viscous. Limitations, reasons for caution While the selected oils for this study represent a wide range of options in the market, future projects could widen this selection and include additional tests, such as optimized bioassays. Results may vary between centers, and thus each laboratory should test and optimize their culture system with their own settings. Wider implications of the findings: Different oil brands have shown differing physico-chemical properties that have a direct effect on the culture system and the stability of several culture conditions. These results may be of major importance to adapt the settings and methodologies followed in each IVF laboratory according to the type of oil being used. Trial registration number Not applicable


1989 ◽  
Vol 257 (2) ◽  
pp. E269-E276 ◽  
Author(s):  
E. S. Hunter ◽  
T. W. Sadler

Hypoglycemia has been reported to induce congenital malformations and growth retardation in rodent embryos during the period of neural tube closure in vitro. However, the biochemical alterations responsible for the production of the dysmorphogenic effects have not been evaluated. Therefore, the rates of glucose metabolism by glycolysis, citric acid cycle, oxidative pentose phosphate pathway (PPP), and anabolic utilization were evaluated in mouse embryos and extraembryonic membranes using the whole embryo culture technique. Altered glucose metabolism by glycolysis and oxidative PPP, as well as altered anabolic synthesis, were produced by exposure to hypoglycemia. In embryos exposed to mild hypoglycemia (80 mg/dl) altered metabolism by the PPP and an associated effect on nucleic acid synthesis were in part responsible for the dysmorphogenic effects of this treatment. In contrast, severe hypoglycemia (40 mg/dl) appeared to have an immediate effect on glycolytic metabolism in addition to effects on the PPP and nucleic acid synthesis. Therefore, a multifactorial biochemical mechanism contributes to the induction of malformations by severe hypoglycemia in mouse embryos in vitro. Furthermore, the differential effects of moderate vs. severe hypoglycemia on glycolytic metabolism, and possibly energy production, may account for the differences in the severity of these treatments on embryonic growth and the incidence of malformations.


2013 ◽  
Vol 62 (5) ◽  
pp. 677-682
Author(s):  
Yong Liu ◽  
Xiang Zhu ◽  
Feng-ling Yu ◽  
Xiao-ming Kong ◽  
Na Lin ◽  
...  

Our previous studies have suggested that Staphylococcus aureus L-forms are able to pass through the placental barrier of mice from the maternal side to the fetal body and affect fetal growth and development, but little is known about the direct influence of S. aureus L-forms on embryos during the critical period of organogenesis. Mouse embryos at gestational day 8.5 were cultured in vitro for 48 h with 0, 50, 100, 200 or 400 c.f.u. S. aureus L-forms ml−1. At the end of the culture period, the mouse embryos were assessed morphologically for viability, growth and development. Bacteriological and immunohistochemical staining were used to determine the existence of S. aureus L-forms in embryonic tissues. We found that both crown–rump length and head length of mouse embryos exposed to S. aureus L-forms at a concentration of 50 c.f.u. ml−1 were reduced. When the mouse embryos were exposed to 100, 200 or 400 c.f.u. S. aureus L-forms ml−1, the total morphological score, number of somites, dry embryo weight, yolk sac diameter, crown–rump length and head length were significantly lower than those of the control group. With the increased concentration of S. aureus L-forms in the culture medium, there were fewer normally developed embryos and more embryos with abnormalities or retardation in growth. S. aureus L-forms detected by Gram-staining and immunohistochemical detection of antigen were found in the tissues of embryos infected by S. aureus L-forms. These data suggest that S. aureus L-forms exert a direct teratogenic effect on cultured mouse embryos in vitro.


2013 ◽  
Vol 41 ◽  
pp. 57-66 ◽  
Author(s):  
Elisa C.M. Tonk ◽  
Joshua F. Robinson ◽  
Aart Verhoef ◽  
Peter T. Theunissen ◽  
Jeroen L.A. Pennings ◽  
...  

Zygote ◽  
2010 ◽  
Vol 19 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Pierre Guérin ◽  
Yves Ménézo

SummaryThe culture of early preimplantation stage embryo is still delicate and the metabolic pathways of embryos are not completely understood. Embryo needs are evolutionary during the preimplantation development, consequently it is difficult to meet embryo needs in vitro. Culture conditions have to respect several physical and chemical equilibria: such as redox potential, pH, osmotic pressure, metabolic flux of energetic compounds, endogenous pools of amino acids and transcripts, etc. Embryo culture media are generally supplemented with amino acids, glucose, other energetic metabolites and antioxidant compounds, vitamin, and growth factors etc. Furthermore autocrine and paracrine regulation of embryo development probably exist. In fact embryo culture conditions have to be as non-toxic as possible. Various types of co-culture systems have been devised to overcome these problems. Complex interrelations exist between embryos and co-cultured cells. The beneficial effects of co-cultured cells may be due to continuous modifications of the culture medium, i.e. the elimination of toxic compounds and/or the supply of embryotrophic factors.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Jie Zhao ◽  
Jia-Xi Zhao ◽  
Ya-Jun Xu

The objective of this study was to assess whether nucleotides supplementationin vitrocould suppress ethanol-induced developmental toxicity in mouse. The models of whole embryo culture (WEC) and midbrain (MB) cell micromass culture were used in this study. In WEC system, exposure to 4.0 mg/mL ethanol for 48 h yielded various developmental malformations of the mice embryos. Nucleotides supplementation (0.16, 0.80, 4.00, 20.00, and 100.00 mg/L) improved the growth parameters to some extent, and the protective effects peaked at 4.00 mg/L. In MB cell micromass culture system, exposure to 4.0 mg/mL ethanol for 5 days resulted in suppression of proliferation and differentiation. Supplementation of nucleotides (0.16, 0.80, 4.00, 20.00, and 100.00 mg/L) showed some protective effects, which peaked at 4.00 mg/L, too. The present research indicated that nucleotides supplementation might be of some benefit in the prevention of ethanol-induced birth defects; however, appropriate dosage requires attention.


Toxicology ◽  
1995 ◽  
Vol 97 (1-3) ◽  
pp. 159-171 ◽  
Author(s):  
B.D. Abbott ◽  
M. Ebron-mccoy ◽  
J.E. Andrews

Sign in / Sign up

Export Citation Format

Share Document