scholarly journals The determinants of alpine butterfly richness and composition vary according to the ecological traits of species

2014 ◽  
Author(s):  
Vincent Sonnay ◽  
Loïc Pellissier ◽  
Jean-Nicolas Pradervand ◽  
Luigi Maiorano ◽  
Anne Dubuis ◽  
...  

Predicting spatial patterns of species diversity and composition using suitable environmental predictors is an essential element in conservation planning. Although species have distinct relationships to environmental conditions, some similarities may exist among species that share functional characteristics or traits. We investigated the relationship between species richness, composition and abiotic and biotic environment in different groups of butterflies that share ecological characteristics. We inventoried butterfly species richness in 192 sites and classified all inventoried species in three traits categories: the caterpillars diet breadth, the habitat requirements and the dispersal ability of the adults. We studied how environment, including influence butterfly species richness and composition within each trait category. Across four modelling approaches, the relative influence of environmental variables on butterfly species richness differed for specialists and generalists. Climatic variables were the main determinants of butterfly species richness and composition for generalists, whereas habitat diversity, and plant richness were also important for specialists. Prediction accuracy was lower for specialists than for generalists. Although climate variables represent the strongest drivers affecting butterfly species richness and composition for generalists, plant richness and habitat diversity are at least as important for specialist butterfly species. As specialist butterflies are among those species particularly threatened by global changes, devising accurate predictors to model specialist species richness is extremely important. However, our results indicate that this task will be challenging because more complex predictors are required.

Author(s):  
Geraldo Freire-Jr. ◽  
Thayane Silva ◽  
Hernani Oliveira ◽  
Chloe Collier ◽  
Hanna P. Rodrigues ◽  
...  

Introduction: Body size is correlated with many aspects of an animal species' natural history, such as life span, abundance, dispersal capacity and diet breadth. However, contrasting trends have been reported for the relationship between body size and these ecological traits. Methods: Butterfly species from fruit-feeding guilds were used to investigate whether body size correlates with species abundances, dispersal, permanence, and diet breadth in a Neotropical savanna in Brazil (Cerrado). We used Blomberg’s K and Phylogenetic Generalized Least Squares models (PGLS) to measure phylogenetic signal strength in species traits, and to estimate size-dispersal-diet breadth associations while taking shared ancestry into account. Results: 539 individuals from 27 species were captured, and 190 individuals were recaptured, representing a 35% recapture rate. We found that body size negatively influenced butterfly abundance. In contrast, body size was positively associated with dispersal levels, distance traveled, number of traps visited, individual permanence, and diet breadth. These results indicate that larger butterflies have a greater proportion of dispersing individuals over longer distances, as they permanence were detected over longer periods than their smaller relatives. Moreover, larger butterflies are more generalized, based on the number of host plant families and genera they consume. Smaller butterflies demand fewer resources, which is reflected in their higher survival in small patches, and may explain their lower dispersal ability, and higher diet specialization. Nevertheless, lower dispersal ability, if not compensated by large population sizes, may threaten small-bodied species inhabiting environments with intense deforestation rates, such as the Cerrado. Conclusions: Body size positively influences dispersal and diet breadth in the fruit-feeding butterflies collected in this study.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 449 ◽  
Author(s):  
Lukas Taxböck ◽  
Dirk Nikolaus Karger ◽  
Michael Kessler ◽  
Daniel Spitale ◽  
Marco Cantonati

Understanding the drivers of species richness gradients is a central challenge of ecological and biodiversity research in freshwater science. Species richness along elevational gradients reveals a great variety of patterns. Here, we investigate elevational changes in species richness and turnover between microhabitats in near-natural spring habitats across Switzerland. Species richness was determined for 175 subsamples from 71 near-natural springs, and Poisson regression was applied between species richness and environmental predictors. Compositional turnover was calculated between the different microhabitats within single springs using the Jaccard index based on observed species and the Chao index based on estimated species numbers. In total, 539 diatom species were identified. Species richness increased monotonically with elevation. Habitat diversity and elevation explaining some of the species richness per site. The Jaccard index for the measured compositional turnover showed a mean similarity of 70% between microhabitats within springs, whereas the Chao index which accounts for sampling artefacts estimated a turnover of only 37%. Thus, the commonly applied method of counting 500 valves led to an undersampling of the rare species and might need to be reconsidered when assessing diatom biodiversity.


2021 ◽  
Vol 53 (1) ◽  
pp. 149-158
Author(s):  
Robert J. Smith ◽  
Sarah Jovan ◽  
Susan Will-Wolf

AbstractLichens occupy diverse substrates across tremendous ranges of environmental variation. In boreal forests, lichen communities co-occur in ‘strata’ defined by terrestrial or arboreal substrates, but these strata may or may not be interchangeable as bioindicators. Do co-occurring lichen strata have similar community structures and environmental responses? Could one stratum serve as a proxy for the other? We assessed variation in species richness and community compositions between ground-layer versus epiphyte-layer lichen strata in boreal forests and peatlands of interior Alaska. Species richness was lower and more spatially structured in the ground layer than the epiphyte layer. Richness of strata was not correlated. The most compositionally unique ground-layer communities were species-poor but contained regionally rare species not common in other plots. Variation in community compositions (ordination scores) were not congruent between strata (Procrustes congruence < 0.16 on 0–1 scale); the largest departures from congruence occurred where ground layers were species-poor. The best predictors of ground-layer community compositions were hydrological and topographic, whereas epiphytes were most associated with macroclimate and tree abundances. We conclude that lichens on different substrates ‘move in different circles’: compositional gradients did not agree and the environmental gradients most important to each lichen stratum were not the same. The conditions which strongly influence one vegetation stratum may have little bearing upon another. As global changes modify habitats, an incremental change in environment may lead community trajectories to diverge among lichen strata.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 942
Author(s):  
Isabela Freitas Oliveira ◽  
Fabricio Beggiato Baccaro ◽  
Fernanda P. Werneck ◽  
Thamara Zacca ◽  
Torbjørn Haugaasen

Amazonia comprises a mosaic of contrasting habitats, with wide environmental heterogeneity at local and regional scales. In central Amazonia, upland forest (terra firme) is the predominant forest type and seasonally flooded forests inundated by white- and black-water rivers (várzea and igapó, respectively) represent around 20% of the forested areas. In this work, we took advantage of a natural spatial arrangement of the main vegetation types in central Amazonia to investigate butterfly assemblage structure in terra firme, várzea and igapó forests at the local scale. We sampled in the low- and high-water seasons, combining active and passive sampling with traps placed in both the understory and canopy. Terra firme supported the highest number of butterfly species, whereas várzea forest provided the highest number of butterfly captures. The high species richness in terra firme may reflect that this forest type is floristically richer than várzea and igapó. Várzea is a very productive environment and may thus support a higher number of butterfly individuals than terra firme and igapó. Most butterfly species (80.2%) were unique to a single forest type and 17 can be considered forest type indicator species in this landscape. Floodplain forest environments are therefore an important complement to terra firme in terms of butterfly species richness and conservation in Amazonia.


2008 ◽  
Vol 59 (10) ◽  
pp. 940 ◽  
Author(s):  
Liesbet Boven ◽  
Bram Vanschoenwinkel ◽  
Els R. De Roeck ◽  
Ann Hulsmans ◽  
Luc Brendonck

Large branchiopods are threatened worldwide by the loss and degradation of their temporary aquatic habitats owing to drainage and intensive agriculture. Sound ecological knowledge of their diversity and distribution is a prerequisite to formulate effective conservation measures. In the present study, large branchiopods were collected from 82 temporary freshwater pools belonging to five habitat types in Kiskunság (Hungary). Dormant propagule bank analysis complemented the field survey. Eleven species were found, with large branchiopods occurring in more than half of the study systems. The high regional species richness and occurrence frequency of large branchiopods make Kiskunság a true ‘hot spot’ of large branchiopod diversity. The local environment was more important than spatial factors (isolation) in explaining the presence of the most common species. Dispersal was most likely not limiting for the large branchiopods in the study area and colonisation success of different species was differentially affected by local conditions, possibly invertebrate predation risk and hydroperiod. Meadow pools and wheel tracks contributed most to regional species richness through the presence of rare and exclusive species. To conserve branchiopod diversity, we stress the importance of high habitat diversity in the landscape and the need to conserve neglected habitats such as wheel tracks.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124327 ◽  
Author(s):  
Silvia Mecenero ◽  
Res Altwegg ◽  
Jonathan F. Colville ◽  
Colin M. Beale

2006 ◽  
Vol 15 (1) ◽  
pp. 443-452 ◽  
Author(s):  
R. G. Field ◽  
T. Gardiner ◽  
C. F. Mason ◽  
J. Hill

Sign in / Sign up

Export Citation Format

Share Document