Lack of congruence between terrestrial and epiphytic lichen strata in boreal forests

2021 ◽  
Vol 53 (1) ◽  
pp. 149-158
Author(s):  
Robert J. Smith ◽  
Sarah Jovan ◽  
Susan Will-Wolf

AbstractLichens occupy diverse substrates across tremendous ranges of environmental variation. In boreal forests, lichen communities co-occur in ‘strata’ defined by terrestrial or arboreal substrates, but these strata may or may not be interchangeable as bioindicators. Do co-occurring lichen strata have similar community structures and environmental responses? Could one stratum serve as a proxy for the other? We assessed variation in species richness and community compositions between ground-layer versus epiphyte-layer lichen strata in boreal forests and peatlands of interior Alaska. Species richness was lower and more spatially structured in the ground layer than the epiphyte layer. Richness of strata was not correlated. The most compositionally unique ground-layer communities were species-poor but contained regionally rare species not common in other plots. Variation in community compositions (ordination scores) were not congruent between strata (Procrustes congruence < 0.16 on 0–1 scale); the largest departures from congruence occurred where ground layers were species-poor. The best predictors of ground-layer community compositions were hydrological and topographic, whereas epiphytes were most associated with macroclimate and tree abundances. We conclude that lichens on different substrates ‘move in different circles’: compositional gradients did not agree and the environmental gradients most important to each lichen stratum were not the same. The conditions which strongly influence one vegetation stratum may have little bearing upon another. As global changes modify habitats, an incremental change in environment may lead community trajectories to diverge among lichen strata.

1992 ◽  
Vol 24 (2) ◽  
pp. 165-180
Author(s):  
M. Hyvärinen ◽  
P. Halonen ◽  
M. Kauppi

Abstract The epiphytic lichen vegetation on the trunks of Pinus sylvestris and Picea abies was studied and analysed by canonical correspondence analysis in relation to a number of environmental variables. The distribution and abundance of epiphytic lichen species proved to be dependent on the age of the stand, showing divergent responses in relation to phorophyte species and environmental variables such as acidity of the bark and vertical location on the trunk. The importance of stand age in the pattern of community variation is concluded to be an outcome of interaction between changes in the structure of the tree canopy, microclimate and properties of the bark. The responses of single lichen species to changes in the environment seem to vary considerably, indicating differences in competitive ability and ecological strategy between the species.


2015 ◽  
Vol 200 ◽  
pp. 120-125 ◽  
Author(s):  
Thomas M.W.J. van Goethem ◽  
Mark A.J. Huijbregts ◽  
G.W. Wieger Wamelink ◽  
Aafke M. Schipper

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 511 ◽  
Author(s):  
Ji-Hua Wang ◽  
Yan-Fei Cai ◽  
Lu Zhang ◽  
Chuan-Kun Xu ◽  
Shi-Bao Zhang

Knowledge about how species richness varies along spatial and environmental gradients is important for the conservation and use of biodiversity. The Ericaceae is a major component of alpine and subalpine vegetation globally. However, little is known about the spatial pattern of species richness and the factors that drive that richness in Ericaceae. We investigated variation in species richness of Ericaceae along an elevational gradient in Yunnan, China, and used a variation partitioning analysis based on redundancy analysis ordination to examine how those changes might be influenced by the mid-domain effect, the species-area relationship, and climatic variables. Species richness varied significantly with elevation, peaking in the upper third of the elevational gradient. Of the factors examined, climate explained a larger proportion of the variance in species richness along the elevational gradient than either land area or geometric constraints. Species richness showed a unimodal relationship with mean annual temperature and mean annual precipitation. The elevational pattern of species richness for Ericaceae was shaped by the combined effects of climate and competition. Our findings contribute to a better understanding of the potential effects of climate change on species richness for Ericaceae.


The Auk ◽  
2021 ◽  
Author(s):  
Flavia A Montaño-Centellas ◽  
Harrison H Jones

Abstract Mixed-species flocks constitute community modules that can help test mechanisms driving changes to community composition across environmental gradients. Here, we examined elevational patterns of flock diversity (species richness, taxonomic diversity, species, and guild composition) and asked if these patterns were reflections of the full bird community at a given elevation (open-membership hypothesis), or if they were instead structured by environmental variables. We surveyed both the overall avian community and mixed-species flocks across an undisturbed elevational gradient (~1,350–3,550 m) in the Bolivian Andes. We then tested for the role of temperature (a surrogate for abiotic stress), resource diversity (arthropods, fruits), and foraging niche diversity (vegetation vertical complexity) in structuring these patterns. Patterns for the overall and flocking communities were similar, supporting our open-membership hypothesis that Andean flocks represent dynamic, unstructured aggregations. Membership openness and the resulting flock composition, however, also varied with elevation in response to temperature and vegetation complexity. We found a mid-elevation peak in flock species richness, size, and Shannon’s diversity at ~2,300 m. The transition of flocking behavior toward a more open-membership system at this elevation may explain a similar peak in the proportion of insectivores joining flocks. At high elevations, increasing abiotic stress and decreasing fruit diversity led more generalist, gregarious tanagers (Thraupidae) to join flocks, resulting in larger yet more even flocks alongside a loss of vegetation structure. At lower elevations, flock species richness increased with greater vegetation complexity, but a greater diversity of foraging niches resulted in flocks that were more segregated into separate canopy and understory sub-types. This segregation likely results from increased costs of interspecific competition and activity matching (i.e., constraints on movement and foraging rate) for insectivores. Mid-elevation flocks (~2,300 m) seemed, therefore, to benefit from both the open-membership composition of high-elevation flocks and the high vegetation complexity of mid- and low-elevation forests.


<i>Abstract.</i>—Linking landscape features, both natural and human-altered, to aquatic ecosystem structure and function is a fundamental objective in landscape ecology and freshwater science, but this process is data- and resource-intensive. Quantifying how landscape stressors influence aquatic communities requires balancing logistic and financial constraints with effectively sampling the landscape to capture gradients of interest. There are a variety of ways to balance these constraints, such as using existing data, handpicked site selection, or a statistical site-selection scheme. Poor sampling design reduces statistical power; however, we do not know how differences in site-selection designs influence our ability to measure ecological responses to landscape gradients. We quantified how the distribution of sample sites across landscape gradients affected the measured responses of stream fish assemblages to these gradients at different sample sizes. Specifically, we used randomization tests to compare the variability in the responses of fish assemblage structure (species richness and composition) to catchment area and land use (agricultural land) with manipulated distributions (random, highly skewed, and uniform) of sites across these landscape gradients. Assemblage composition was more sensitive than species richness to sampling design, and we observed less variability in the detected response of assemblage composition when samples were distributed uniformly across landscape gradients, especially when sample sizes were small. Although strong responses to environmental gradients, such as species richness to catchment area, are robust to sampling distributions, large sample size and a uniform distribution of samples might help elucidate more subtle responses to environmental gradients.


2019 ◽  
Vol 15 (10) ◽  
pp. 20190493 ◽  
Author(s):  
T. Edward Roberts ◽  
Sally A. Keith ◽  
Carsten Rahbek ◽  
Tom C. L. Bridge ◽  
M. Julian Caley ◽  
...  

Natural environmental gradients encompass systematic variation in abiotic factors that can be exploited to test competing explanations of biodiversity patterns. The species–energy (SE) hypothesis attempts to explain species richness gradients as a function of energy availability. However, limited empirical support for SE is often attributed to idiosyncratic, local-scale processes distorting the underlying SE relationship. Meanwhile, studies are also often confounded by factors such as sampling biases, dispersal boundaries and unclear definitions of energy availability. Here, we used spatially structured observations of 8460 colonies of photo-symbiotic reef-building corals and a null-model to test whether energy can explain observed coral species richness over depth. Species richness was left-skewed, hump-shaped and unrelated to energy availability. While local-scale processes were evident, their influence on species richness was insufficient to reconcile observations with model predictions. Therefore, energy availability, either in isolation or in combination with local deterministic processes, was unable to explain coral species richness across depth. Our results demonstrate that local-scale processes do not necessarily explain deviations in species richness from theoretical models, and that the use of idiosyncratic small-scale factors to explain large-scale ecological patterns requires the utmost caution.


2018 ◽  
Vol 55 (1-3) ◽  
pp. 105-120 ◽  
Author(s):  
Jarmo Laitinen ◽  
Eero Kaakinen ◽  
Jari Oksanen ◽  
Miia Saarimaa ◽  
Rauno Ruuhijärvi

Ecology ◽  
2012 ◽  
Author(s):  
Herman A. Verhoef

At the beginning of the 20th century there was much debate about the “nature” of communities. The driving question was whether the community was a self-organized system of co-occurring species or simply a haphazard collection of populations with minimal functional integration. At that time, two extreme views dominated the discussion: one view considered a community as a superorganism, the member species of which were tightly bound together by interactions that contributed to repeatable patterns of species abundance in space and time. This concept led to the assumption that communities are fundamental entities, to be classified as the Linnaean taxonomy of species. Frederick E. Clements was one of the leading proponents of this approach, and his view became known as the organismic concept of communities. This assumes a common evolutionary history for the integrated species. The opposite view was the individualistic continuum concept, advocated by H. A. Gleason. His focus was on the traits of individual species that allow each to live within specific habitats or geographical ranges. In this view a community is an assemblage of populations of different species whose traits allow persisting in a prescribed area. The spatial boundaries are not sharp, and the species composition can change considerably. Consequently, it was discussed whether ecological communities were sufficiently coherent entities to be considered appropriate study objects. Later, consensus was reached: that properties of communities are of central interest in ecology, regardless of their integrity and coherence. From the 1950s and 1960s onward, the discussion was dominated by the deterministic outcome of local interactions between species and their environments and the building of this into models of communities. This approach, indicated as “traditional community ecology,” led to a morass of theoretical models, without being able to provide general principles about many-species communities. Early-21st-century approaches to bringing general patterns into community ecology concern (1) the metacommunity approach, (2) the functional trait approach, (3) evolutionary community ecology, and (4) the four fundamental processes. The metacommunity approach implicitly recognizes and studies the important role of spatiotemporal dynamics. In the functional trait approach, four themes are focused upon: traits, environmental gradients, the interaction milieu, and performance currencies. This functional, trait-focused approach should have a better prospect of understanding the effects of global changes. Evolutionary community ecology is an approach in which the combination of community ecology and evolutionary biology will lead to a better understanding of the complexity of communities and populations. The four fundamental processes are selection, drift, speciation, and dispersal. This approach concerns an organizational scheme for community ecology, based on these four processes to describe all existing specific models and frameworks, in order to make general statements about process–pattern connections.


Sign in / Sign up

Export Citation Format

Share Document