scholarly journals E. colipopulations in unpredictably fluctuating environments evolve to face novel stresses through enhanced efflux activity

2014 ◽  
Author(s):  
Shraddha Madhav Karve ◽  
Sachit Daniel ◽  
Yashraj Chavhan ◽  
Abhishek Anand ◽  
Somendra Singh Kharola ◽  
...  

There is considerable understanding about how laboratory populations respond to predictable (constant or deteriorating-environment) selection for single environmental variables like temperature or pH. However, such insights may not apply when selection environments comprise multiple variables that fluctuate unpredictably, as is common in nature. To address this issue, we grew replicate laboratory populations ofE. coliin nutrient broth whose pH and concentrations of salt (NaCl) and hydrogen peroxide (H2O2) were randomly changed daily. After ~170 generations, the fitness of the selected populations had not increased in any of the three selection environments. However, these selected populations had significantly greater fitness in four novel environments which have no known fitness-correlation with tolerance to pH, NaCl or H2O2. Interestingly, contrary to expectations, hypermutators did not evolve. Instead, the selected populations evolved an increased ability for energy dependent efflux activity that might enable them to throw out toxins, including antibiotics, from the cell at a faster rate. This provides an alternate mechanism for how evolvability can evolve in bacteria and potentially lead to broad-spectrum antibiotic resistance, even in the absence of prior antibiotic exposure. Given that environmental variability is increasing in nature, this might have serious consequences for public-health.

2017 ◽  
Author(s):  
Shraddha Karve ◽  
Devika Bhave ◽  
Sutirth Dey

AbstractEnvironmental variability is on the rise in different parts of the earth and the survival of many species depend on how well they cope with these fluctuations. Our current understanding of how organisms adapt to unpredictably fluctuating environments is almost entirely based on studies that investigate fluctuations among different values of a single environmental stressor like temperature or pH. However, in nature multiple stresses often exist simultaneously. How would unpredictability in environmental fluctuations affect adaptation under such a scenario? To answer this question, we subjected laboratory populations of Escherichia coli to selection over ~260 generations. The populations faced predictable and unpredictable environmental fluctuations across qualitatively different selection environments, namely, salt and acidic pH. We show that predictability of environmental fluctuations does not play a role in determining the extent of adaptation. Interestingly, the extent of ancestral adaptation, to the chosen selection environments, is of key importance. Integrating the insights from two previous studies, our results suggest that it is the simultaneous presence of multiple environmental factors that poses a bigger constraint on extent of adaptation, rather than unpredictability of the fluctuations.


2014 ◽  
Vol 81 (1) ◽  
pp. 130-138 ◽  
Author(s):  
James Kirby ◽  
Minobu Nishimoto ◽  
Ruthie W. N. Chow ◽  
Edward E. K. Baidoo ◽  
George Wang ◽  
...  

ABSTRACTTerpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of adxsdeletion inEscherichia coligrown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-typeE. coliyajOgene, annotated as a putative xylose reductase, or via various mutations in the nativeribBgene.In vitroanalysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway inE. colifor production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


2015 ◽  
Vol 87 (3) ◽  
pp. 1717-1726 ◽  
Author(s):  
JULIANA WOJCIECHOWSKI ◽  
ANDRÉ A. PADIAL

One of the main goals of monitoring cyanobacteria blooms in aquatic environments is to reveal the relationship between cyanobacterial abundance and environmental variables. Studies typically correlate data that were simultaneously sampled. However, samplings occur sparsely over time and may not reveal the short-term responses of cyanobacterial abundance to environmental changes. In this study, we tested the hypothesis that stronger cyanobacteria x environment relationships in monitoring are found when the temporal variability of sampling points is incorporated in the statistical analyses. To this end, we investigated relationships between cyanobacteria and seven environmental variables that were sampled twice yearly for three years across 11 reservoirs, and data from an intensive monitoring in one of these reservoirs. Poor correlations were obtained when correlating data simultaneously sampled. In fact, the 'highly recurrent' role of phosphorus in cyanobacteria blooms is not properly observed in all sampling periods. On the other hand, the strongest correlation values for the total phosphorus x cyanobacteria relationship were observed when we used the variation of sampling points. We have also shown that environment variables better explain cyanobacteria when a time lag is considered. We conclude that, in cyanobacteria monitoring, the best approach to reveal determinants of cyanobacteria blooms is to consider environmental variability.


2015 ◽  
Author(s):  
Marjon GJ de Vos ◽  
Alexandre Dawid ◽  
Vanda Sunderlikova ◽  
Sander J Tans

Epistatic interactions can frustrate and shape evolutionary change. Indeed, phenotypes may fail to evolve because essential mutations can only be selected positively if fixed simultaneously. How environmental variability affects such constraints is poorly understood. Here we studied genetic constraints in fixed and fluctuating environments, using theEscherichia coli lacoperon as a model system for genotype-environment interactions. The data indicated an apparent paradox: in different fixed environments, mutational trajectories became trapped at sub-optima where no further improvements were possible, while repeated switching between these same environments allowed unconstrained adaptation by continuous improvements. Pervasive cross-environmental trade-offs transformed peaks into valleys upon environmental change, thus enabling escape from entrapment. This study shows that environmental variability can lift genetic constraint, and that trade-offs not only impede but can also facilitate adaptive evolution.


2016 ◽  
Author(s):  
Shraddha Karve ◽  
Devika Bhave ◽  
Dhanashri Nevgi ◽  
Sutirth Dey

AbstractIn nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. While both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations ofEscherichia coliunder complex (i.e. stressful combinations of pH, H2O2and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade-off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2and NaCl) for the same duration. The fluctuation-selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, while the populations selected under constant stresses experienced severe tradeoffs in many of the environments other than those in which they were selected, the fluctuation-selected populations could by-pass the across-environment trade-offs completely. Interestingly, trade-offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade-off structure in evolving populations.


2019 ◽  
Author(s):  
Caroline B. Turner ◽  
Sean W. Buskirk ◽  
Katrina B. Harris ◽  
Vaughn S. Cooper

AbstractNatural environments are rarely static; rather selection can fluctuate on time scales ranging from hours to centuries. However, it is unclear how adaptation to fluctuating environments differs from adaptation to constant environments at the genetic level. For bacteria, one key axis of environmental variation is selection for planktonic or biofilm modes of growth. We conducted an evolution experiment with Burkholderia cenocepacia, comparing the evolutionary dynamics of populations evolving under constant selection for either biofilm formation or planktonic growth with populations in which selection fluctuated between the two environments on a weekly basis. Populations evolved in the fluctuating environment shared many of the same genetic targets of selection as those evolved in constant biofilm selection, but were genetically distinct from the constant planktonic populations. In the fluctuating environment, mutations in the biofilm-regulating genes wspA and rpfR rose to high frequency in all replicate populations. A mutation in wspA first rose rapidly and nearly fixed during the initial biofilm phase but was subsequently displaced by a collection of rpfR mutants upon the shift to the planktonic phase. The wspA and rpfR genotypes coexisted via negative frequency-dependent selection around an equilibrium frequency that shifted between the environments. The maintenance of coexisting genotypes in the fluctuating environment was unexpected. Under temporally fluctuating environments coexistence of two genotypes is only predicted under a narrow range of conditions, but the frequency-dependent interactions we observed provide a mechanism that can increase the likelihood of coexistence in fluctuating environments.


2019 ◽  
Author(s):  
Bryan B. Hsu ◽  
Jeffrey C. Way ◽  
Pamela A. Silver

ABSTRACTElimination or alteration of select members of the gut microbiota is key to therapeutic efficacy. However, the complexity of these microbial inhabitants makes it challenging to precisely target bacteria without unexpected cascading effects. Here, we use bacteriophage to deliver exogenous genes to specific bacteria by genomic integration of temperate phage for long-lasting modification. As a real-world therapeutic test, we engineered λ phage to transcriptionally-repress shigatoxin by using genetic hybrids between λ and other lambdoid phages to overcome resistance encoded by the virulent prophage derived from enterohemorrhagic E. coli. We show that a single dose of engineered phage propagates throughout the bacterial community and reduces shigatoxin production in an enteric mouse model of infection without markedly affecting bacterial concentrations. We thus minimize the selection for resistance by relying on anti-virulence and not anti-bacterial action. Our work reveals a new framework for transferring functions to bacteria within their native environment.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20192070 ◽  
Author(s):  
Thomas R. Haaland ◽  
Jonathan Wright ◽  
Irja I. Ratikainen

In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.


Sign in / Sign up

Export Citation Format

Share Document