scholarly journals The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome

2015 ◽  
Author(s):  
Hiroaki Sakai ◽  
Ken Naito ◽  
Eri Ogiso-Tanaka ◽  
Yu Takahashi ◽  
Kohtaro Iseki ◽  
...  

Second-generation sequencers (SGS) have been game-changing, achieving cost-effective whole genome sequencing in many non-model organisms. However, a large portion of the genomes still remains unassembled. We reconstructed azuki bean (Vigna angularis) genome using single molecule real-time (SMRT) sequencing technology and achieved the best contiguity and coverage among currently assembled legume crops. The SMRT-based assembly produced 100 times longer contigs with 100 times smaller amount of gaps compared to the SGS-based assemblies. A detailed comparison between the assemblies revealed that the SMRT-based assembly enabled a more comprehensive gene annotation than the SGS-based assemblies where thousands of genes were missing or fragmented. A chromosome-scale assembly was generated based on the high-density genetic map, covering 86% of the azuki bean genome. We demonstrated that SMRT technology, though still needed to be assisted by SGS data, can achieve a near-complete assembly of a eukaryotic genome.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hiroaki Sakai ◽  
Ken Naito ◽  
Eri Ogiso-Tanaka ◽  
Yu Takahashi ◽  
Kohtaro Iseki ◽  
...  

2018 ◽  
Author(s):  
Alexander Lim ◽  
Bryan Naidenov ◽  
Haley Bates ◽  
Karyn Willyerd ◽  
Timothy Snider ◽  
...  

AbstractDisruptive innovations in long-range, cost-effective direct template nucleic acid sequencing are transforming clinical and diagnostic medicine. A multidrug resistant strain and a pan-susceptible strain ofMannheimia haemolytica, isolated from pneumonic bovine lung samples, were respectively sequenced at 146x and 111x coverage with Oxford Nanopore Technologies MinION.De novoassembly produced a complete genome for the non-resistant strain and a nearly complete assembly for the drug resistant strain. Functional annotation using RAST (Rapid Annotations using Subsystems Technology), CARD (Comprehensive Antibiotic Resistance Database) and ResFinder databases identified genes conferring resistance to different classes of antibiotics including beta lactams, tetracyclines, lincosamides, phenicols, aminoglycosides, sulfonamides and macrolides. Antibiotic resistance phenotypes of theM. haemolyticastrains were confirmed with minimum inhibitory concentration (MIC) assays. The sequencing capacity of highly portable MinION devices was verified by sub-sampling sequencing reads; potential for antimicrobial resistance determined by identification of resistance genes in the draft assemblies with as little as 5,437 MinION reads corresponded to all classes of MIC assays. The resulting quality assemblies and AMR gene annotation highlight efficiency of ultra long-read, whole-genome sequencing (WGS) as a valuable tool in diagnostic veterinary medicine.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Jessica M. Bryant ◽  
Sebastian Baumgarten ◽  
Audrey Lorthiois ◽  
Christine Scheidig-Benatar ◽  
Aurélie Claës ◽  
...  

ABSTRACT Plasmodium falciparum is the species of human malaria parasite that causes the most severe form of the disease. Here, we used single-molecule real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence, assemble de novo , and annotate the genome of a P. falciparum NF54 clone.


2018 ◽  
Vol 35 (15) ◽  
pp. 2654-2656 ◽  
Author(s):  
Guoli Ji ◽  
Wenbin Ye ◽  
Yaru Su ◽  
Moliang Chen ◽  
Guangzao Huang ◽  
...  

Abstract Summary Alternative splicing (AS) is a well-established mechanism for increasing transcriptome and proteome diversity, however, detecting AS events and distinguishing among AS types in organisms without available reference genomes remains challenging. We developed a de novo approach called AStrap for AS analysis without using a reference genome. AStrap identifies AS events by extensive pair-wise alignments of transcript sequences and predicts AS types by a machine-learning model integrating more than 500 assembled features. We evaluated AStrap using collected AS events from reference genomes of rice and human as well as single-molecule real-time sequencing data from Amborella trichopoda. Results show that AStrap can identify much more AS events with comparable or higher accuracy than the competing method. AStrap also possesses a unique feature of predicting AS types, which achieves an overall accuracy of ∼0.87 for different species. Extensive evaluation of AStrap using different parameters, sample sizes and machine-learning models on different species also demonstrates the robustness and flexibility of AStrap. AStrap could be a valuable addition to the community for the study of AS in non-model organisms with limited genetic resources. Availability and implementation AStrap is available for download at https://github.com/BMILAB/AStrap. Supplementary information Supplementary data are available at Bioinformatics online.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3702 ◽  
Author(s):  
Santiago Montero-Mendieta ◽  
Manfred Grabherr ◽  
Henrik Lantz ◽  
Ignacio De la Riva ◽  
Jennifer A. Leonard ◽  
...  

Whole genome sequencing (WGS) is a very valuable resource to understand the evolutionary history of poorly known species. However, in organisms with large genomes, as most amphibians, WGS is still excessively challenging and transcriptome sequencing (RNA-seq) represents a cost-effective tool to explore genome-wide variability. Non-model organisms do not usually have a reference genome and the transcriptome must be assembledde-novo. We used RNA-seq to obtain the transcriptomic profile forOreobates cruralis, a poorly known South American direct-developing frog. In total, 550,871 transcripts were assembled, corresponding to 422,999 putative genes. Of those, we identified 23,500, 37,349, 38,120 and 45,885 genes present in the Pfam, EggNOG, KEGG and GO databases, respectively. Interestingly, our results suggested that genes related to immune system and defense mechanisms are abundant in the transcriptome ofO. cruralis. We also present a pipeline to assist with pre-processing, assembling, evaluating and functionally annotating ade-novotranscriptome from RNA-seq data of non-model organisms. Our pipeline guides the inexperienced user in an intuitive way through all the necessary steps to buildde-novotranscriptome assemblies using readily available software and is freely available at:https://github.com/biomendi/TRANSCRIPTOME-ASSEMBLY-PIPELINE/wiki.


2020 ◽  
Vol 36 (13) ◽  
pp. 3966-3974
Author(s):  
Ryo Nakabayashi ◽  
Shinichi Morishita

Abstract Motivation De novo assembly of reference-quality genomes used to require enormously laborious tasks. In particular, it is extremely time-consuming to build genome markers for ordering assembled contigs along chromosomes; thus, they are only available for well-established model organisms. To resolve this issue, recent studies demonstrated that Hi-C could be a powerful and cost-effective means to output chromosome-length scaffolds for non-model species with no genome marker resources, because the Hi-C contact frequency between a pair of two loci can be a good estimator of their genomic distance, even if there is a large gap between them. Indeed, state-of-the-art methods such as 3D-DNA are now widely used for locating contigs in chromosomes. However, it remains challenging to reduce errors in contig orientation because shorter contigs have fewer contacts with their neighboring contigs. These orientation errors lower the accuracy of gene prediction, read alignment, and synteny block estimation in comparative genomics. Results To reduce these contig orientation errors, we propose a new algorithm, named HiC-Hiker, which has a firm grounding in probabilistic theory, rigorously models Hi-C contacts across contigs, and effectively infers the most probable orientations via the Viterbi algorithm. We compared HiC-Hiker and 3D-DNA using human and worm genome contigs generated from short reads, evaluated their performances, and observed a remarkable reduction in the contig orientation error rate from 4.3% (3D-DNA) to 1.7% (HiC-Hiker). Our algorithm can consider long-range information between distal contigs and precisely estimates Hi-C read contact probabilities among contigs, which may also be useful for determining the ordering of contigs. Availability and implementation HiC-Hiker is freely available at: https://github.com/ryought/hic_hiker.


Sign in / Sign up

Export Citation Format

Share Document