scholarly journals Evolution-Based Functional Decomposition of Proteins

2015 ◽  
Author(s):  
Olivier Rivoire ◽  
Kimberly A. Reynolds ◽  
Rama Ranganathan

The essential biological properties of proteins - folding, biochemical activities, and the capacity to adapt - arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function, but requires broad further testing by the scientific community. To facilitate this, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package. We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment - a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for understanding the structural basis for protein function and for generally testing the concept of sectors as the principal functional units of proteins.

2017 ◽  
Author(s):  
Victor H. Salinas ◽  
Rama Ranganathan

Protein function arises from a poorly defined pattern of cooperative energetic interactions between amino acid residues. Strategies for deducing this pattern have been proposed, but lack of benchmark data has limited experimental verification. Here, we extend deep-mutation technologies to enable measurement of many thousands of pairwise amino acid couplings in members of a protein family. The data show that despite great evolutionary divergence, homologous proteins conserve a sparse, spatially distributed network of cooperative interactions between amino acids that underlies function. This pattern is quantitatively captured in the coevolution of amino acid positions, especially as indicated by the statistical coupling analysis (SCA), providing experimental confirmation of the key tenets of this method. This work establishes a clear link between physical constraints on protein function and sequence analysis, enabling a general practical approach for understanding the structural basis for protein function.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Victor H Salinas ◽  
Rama Ranganathan

Protein function arises from a poorly understood pattern of energetic interactions between amino acid residues. Sequence-based strategies for deducing this pattern have been proposed, but lack of benchmark data has limited experimental verification. Here, we extend deep-mutation technologies to enable measurement of many thousands of pairwise amino acid couplings in several homologs of a protein family – a deep coupling scan (DCS). The data show that cooperative interactions between residues are loaded in a sparse, evolutionarily conserved, spatially contiguous network of amino acids. The pattern of amino acid coupling is quantitatively captured in the coevolution of amino acid positions, especially as indicated by the statistical coupling analysis (SCA), providing experimental confirmation of the key tenets of this method. This work exposes the collective nature of physical constraints on protein function and clarifies its link with sequence analysis, enabling a general practical approach for understanding the structural basis for protein function.


1999 ◽  
Vol 64 (8) ◽  
pp. 1211-1252 ◽  
Author(s):  
Jan Hlaváček ◽  
Renáta Marcová

The first part of this review deals with the biosynthesis and a biological function of strongly vasoactive peptides named endothelins (ETs) including vasoactive intestinal contractor. Where it was useful, snake venoms sarafotoxins which are structural endothelin derivatives, were also mentioned. In the second part, an attention is paid to structural basis of the ETs biological activity, with respect to alterations of amino acid residues in the parent peptides modifying the conformation and consequently the physico-chemical and biological properties in corresponding ETs analogs. Special attention is focussed on the area of ETs receptors and their interaction with peptide and non peptide agonists and antagonists, important in designing selective inhibitors of ETs receptors potentially applicable as drugs in a medicine. A review with 182 references.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


2012 ◽  
Vol 60 (3) ◽  
pp. 495-505
Author(s):  
M. Startek ◽  
S. Lasota ◽  
M. Sykulski ◽  
A. Bułak ◽  
L. Noé ◽  
...  

Abstract In this paper we present two algorithms that may serve as efficient alternatives to the well-known PSI BLAST tool: SeedBLAST and CTX-PSI Blast. Both may benefit from the knowledge about amino acid composition specific to a given protein family: SeedBLAST uses the advisedly designed seed, while CTX-PSI BLAST extends PSI BLAST with the context-specific substitution model. The seeding technique became central in the theory of sequence alignment. There are several efficient tools applying seeds to DNA homology search, but not to protein homology search. In this paper we fill this gap. We advocate the use of multiple subset seeds derived from a hierarchical tree of amino acid residues. Our method computes, by an evolutionary algorithm, seeds that are specifically designed for a given protein family. The seeds are represented by deterministic finite automata (DFAs) and built into the NCBI-BLAST software. This extended tool, named SeedBLAST, is compared to the original BLAST and PSI-BLAST on several protein families. Our results demonstrate a superiority of SeedBLAST in terms of efficiency, especially in the case of twilight zone hits. The contextual substitution model has been proven to increase sensitivity of protein alignment. In this paper we perform a next step in the contextual alignment program. We announce a contextual version of the PSI-BLAST algorithm, an iterative version of the NCBI-BLAST tool. The experimental evaluation has been performed demonstrating a significantly higher sensitivity compared to the ordinary PSI-BLAST algorithm.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3942-3947 ◽  
Author(s):  
CH Huang ◽  
ME Reid ◽  
SS Xie ◽  
OO Blumenfeld

The Wright (Wra/Wrb) blood group polymorphism is defined by an allelic change (Lys658Glu) in the band 3 protein; nevertheless, the Wrb antigen apparently requires glycophorin A (GPA) for surface presentation. To gain insight into the structural basis for this protein-protein interaction and delineate its relationship with Wrb antigen expression, we investigated GPA and band 3 sequence polymorphisms occurring in rare humans and nonhuman primates. The lack of GPA or amino acid residues 59 through 71 of GPA results in the absence of Wrb from human red blood cells (RBCs) exhibiting the MkMk, En(a-), or MiV phenotype. However, the SAT homozygous cells carried a Glu658 form of band 3 and a hybrid glycophorin with the entire GPA extramembrane domain from residues 1 through 71, yet expressed no Wrb antigen. This finding suggests that formation of the Wrb antigenic structure is dependent on protein folding and that the transmembrane junction of GPA is important in maintaining the required conformation. Comparative analyses of GPA and band 3 homologues led to the identification in the interacting regions of conserved and dispensable amino acid residues that correlated with the Wrb positive or negative status on nonhuman primates. In particular, the chimpanzee RBCs cells expressed Wrb and the Glu658 form of band 3, which is identical to humans, but their GPA contained the Gly rather than Arg residue at position 61. Taken together, the results suggest that (1) Arg61 of GPA and the proposed Arg61-Glu658 charge pair are not crucial for Wrb antigen exhibition and (2) the role of GPA for interaction with band 3, including Glu658, probably involves a number of amino acid residues located in the alpha-helical region and transmembrane junction.


2003 ◽  
Vol 69 (4) ◽  
pp. 2349-2355 ◽  
Author(s):  
Yuji Nagata ◽  
Zbyněk Prokop ◽  
Soňa Marvanová ◽  
Jana Sýkorová ◽  
Marta Monincová ◽  
...  

ABSTRACT The homology model of protein Rv2579 from Mycobacterium tuberculosis H37Rv was compared with the crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26, and this analysis revealed that 6 of 19 amino acid residues which form an active site and entrance tunnel are different in LinB and Rv2579. To characterize the effect of replacement of these six amino acid residues, mutations were introduced cumulatively into the six amino acid residues of LinB. The sixfold mutant, which was supposed to have the active site of Rv2579, exhibited haloalkane dehalogenase activity with the haloalkanes tested, confirming that Rv2579 is a member of the haloalkane dehalogenase protein family.


2006 ◽  
Vol 50 (11) ◽  
pp. 3717-3723 ◽  
Author(s):  
Anil Kumar Singh ◽  
Rajen Haldar ◽  
Debabrata Mandal ◽  
Manikuntala Kundu

ABSTRACT NorM, a putative efflux pump of Vibrio cholerae, is a member of the multidrug and toxic compound extrusion family of transporters. We demonstrate that NorM confers resistance to norfloxacin, ciprofloxacin, and ethidium bromide. Inactivation of norM rendered V. cholerae hypersensitive towards these fluoroquinolones. Multiple sequence alignment of members of its family identified several regions of high sequence conservation. The topology of NorM was determined using β-lactamase and chloramphenicol acetyltransferase fusions. The amino acid residues G184, K185, G187, P189, E190, G192, and G195 in the periplasmic loops and L381, R382, G383, Y384, K385, and D386 in the cytoplasmic loops, as well as all the acidic and cysteine residues of NorM, were mutated. Mutants G184V, G184W, K185I, P189S, E190K, and E190A lost the norfloxacin resistance-imparting phenotype characteristic of NorM. Mutants E124V, D155V, G187V, G187R, C196S, Y384H, Y384S, and Y384F exhibited partial resistance to norfloxacin. Mutants with replacements of G184 or G187 by A, K185 by R, and E190 by D retained the norfloxacin resistance phenotype of NorM. Analysis of the accumulation of norfloxacin in intact cells of Escherichia coli expressing NorM or its mutants in the presence or absence of carbonyl cyanide m-chlorophenylhydrazone supported the results obtained through susceptibility testing and argued in favor of NorM-mediated efflux as the determining factor in norfloxacin susceptibility in the genetically manipulated strains. Taken together, these results suggested that E124, D155, G184, K185, G187, P189, E190, C196, and Y384 are likely involved in NorM-dependent norfloxacin efflux. Except for D155, C196, and Y384, all of these residues are located in periplasmic loops.


Sign in / Sign up

Export Citation Format

Share Document