Abstract 18836: Integrative Pathway Analysis of Genome-wide Association Studies of Carotid Plaque Phenotypes

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Yuqi Zhao ◽  
Sander M van der Laan ◽  
Hester M den Ruijter ◽  
Saskia Haitjema ◽  
Gerard Pasterkamp ◽  
...  

Introduction: The composition of atherosclerotic plaques differs between individuals and contributes to the incidence of cardiovascular events. A better understanding of the biology underlying variability in plaque composition will provide insights into the progression of cardiovascular diseases. We carried out genome-wide association studies (GWAS) to investigate the genetic underpinnings of the plaque. Methods: We included carotid endarterectomy patients from the Athero-Express Biobank Study (n = 1,439). We quantified the percentage of macrophages and smooth muscle cells, the number of intraplaque vessels, the amount of collagen and calcification, the atheroma size, and the presence of plaque hemorrhage. GWAS was performed for all 9 plaque traits, and combined with summary level from GWAS consortia data on coronary artery disease (CAD), and ischemic stroke. Next, these data were integrated with data from human expression quantitative trait loci analyses, and pathway analyses of the plaque traits. Results: No individual locus reached genome-wide significance, likely due to the moderate sample size involved. However, it is plausible that perturbations of diverse pathways by a large number of genetic loci with small effects together contribute to the regulation of plaque composition. We identified 42-97 pathways significantly associated with each plaque phenotype, with many specific to each trait, supporting the presence of unique genetic components of individual plaque phenotypes. We also detected 39 pathways associated with at least four plaque phenotypes, among which were CAD-associated processes such as “extracellular matrix”, “complement and coagulation cascades” and stroke-associated pathways such as “Toll-like receptor signaling”. Interestingly, we found that smooth muscle cell percentage and atheroma size shared more genetic loci and pathways with intraplaque hemorrhage (such as “Sphingolipid metabolism”); the latter trait is associated with secondary cardiovascular events. Conclusion: There are genetic correlations among plaque phenotypes as well as between plaque phenotypes that provide mechanistic insight into the composition of the plaque and progression to secondary events.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueming Yao ◽  
Joseph T. Glessner ◽  
Junyi Li ◽  
Xiaohui Qi ◽  
Xiaoyuan Hou ◽  
...  

AbstractNeuropsychiatric disorders, such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), bipolar disorder (BIP), and major depressive disorder (MDD) share common clinical presentations, suggesting etiologic overlap. A substantial proportion of SNP-based heritability for neuropsychiatric disorders is attributable to genetic components, and genome-wide association studies (GWASs) focusing on individual diseases have identified multiple genetic loci shared between these diseases. Here, we aimed at identifying novel genetic loci associated with individual neuropsychiatric diseases and genetic loci shared by neuropsychiatric diseases. We performed multi-trait joint analyses and meta-analysis across five neuropsychiatric disorders based on their summary statistics from the Psychiatric Genomics Consortium (PGC), and further carried out a replication study of ADHD among 2726 cases and 16299 controls in an independent pediatric cohort. In the multi-trait joint analyses, we found five novel genome-wide significant loci for ADHD, one novel locus for BIP, and ten novel loci for MDD. We further achieved modest replication in our independent pediatric dataset. We conducted fine-mapping and functional annotation through an integrative multi-omics approach and identified causal variants and potential target genes at each novel locus. Gene expression profile and gene-set enrichment analysis further suggested early developmental stage expression pattern and postsynaptic membrane compartment enrichment of candidate genes at the genome-wide significant loci of these neuropsychiatric disorders. Therefore, through a multi-omics approach, we identified novel genetic loci associated with the five neuropsychiatric disorders which may help to better understand the underlying molecular mechanism of neuropsychiatric diseases.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel L. McCartney ◽  
Josine L. Min ◽  
Rebecca C. Richmond ◽  
Ake T. Lu ◽  
Maria K. Sobczyk ◽  
...  

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.


2018 ◽  
Vol 47 (5) ◽  
pp. 304-316 ◽  
Author(s):  
Asahi Hishida ◽  
Masahiro Nakatochi ◽  
Masato Akiyama ◽  
Yoichiro Kamatani ◽  
Takeshi Nishiyama ◽  
...  

Background: Chronic kidney disease (CKD) is a rapidly growing, worldwide public health problem. Recent advances in genome-wide-association studies (GWAS) revealed several genetic loci associated with renal function traits worldwide. Methods: We investigated the association of genetic factors with the levels of serum creatinine (SCr) and the estimated glomerular filtration rate (eGFR) in Japanese population-based cohorts analyzing the GWAS imputed data with 11,221 subjects and 12,617,569 variants, and replicated the findings with the 148,829 hospital-based Japanese subjects. Results: In the discovery phase, 28 variants within 4 loci (chromosome [chr] 2 with 8 variants including rs3770636 in the LDL receptor related protein 2 gene locus, on chr 5 with 2 variants including rs270184, chr 17 with 15 variants including rs3785837 in the BCAS3 gene locus, and chr 18 with 3 variants including rs74183647 in the nuclear factor of ­activated T-cells 1 gene locus) reached the suggestive level of p < 1 × 10–6 in association with eGFR and SCr, and 2 variants on chr 4 (including rs78351985 in the microsomal triglyceride transfer protein gene locus) fulfilled the suggestive level in association with the risk of CKD. In the replication phase, 25 variants within 3 loci (chr 2 with 7 variants, chr 17 with 15 variants and chr 18 with 3 variants) in association with eGFR and SCr, and 2 variants on chr 4 associated with the risk of CKD became nominally statistically significant after Bonferroni correction, among which 15 variants on chr 17 and 3 variants on chr 18 reached genome-wide significance of p < 5 × 10–8 in the combined study meta-analysis. The associations of the loci on chr 2 and 18 with eGFR and SCr as well as that on chr 4 with CKD risk have not been previously reported in the Japanese and East Asian populations. Conclusion: Although the present GWAS of renal function traits included the largest sample of Japanese participants to date, we did not identify novel loci for renal traits. However, we identified the novel associations of the genetic loci on chr 2, 4, and 18 with renal function traits in the Japanese population, suggesting these are transethnic loci. Further investigations of these associations are expected to further validate our findings for the potential establishment of personalized prevention of renal disease in the Japanese and East Asian populations.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Seongwon Cha ◽  
Ji Eun Lim ◽  
Ah Yeon Park ◽  
Jun-Hyeong Do ◽  
Si Woo Lee ◽  
...  

2016 ◽  
Vol 175 ◽  
pp. 112-120 ◽  
Author(s):  
Norrina B. Allen ◽  
Donald Lloyd-Jones ◽  
Shih-Jen Hwang ◽  
Laura Rasmussen-Torvik ◽  
Myriam Fornage ◽  
...  

2017 ◽  
Author(s):  
Haohan Wang ◽  
Xiang Liu ◽  
Yunpeng Xiao ◽  
Ming Xu ◽  
Eric P. Xing

AbstractGenome-wide Association Study has presented a promising way to understand the association between human genomes and complex traits. Many simple polymorphic loci have been shown to explain a significant fraction of phenotypic variability. However, challenges remain in the non-triviality of explaining complex traits associated with multifactorial genetic loci, especially considering the confounding factors caused by population structure, family structure, and cryptic relatedness. In this paper, we propose a Squared-LMM (LMM2) model, aiming to jointly correct population and genetic confounding factors. We offer two strategies of utilizing LMM2 for association mapping: 1) It serves as an extension of univariate LMM, which could effectively correct population structure, but consider each SNP in isolation. 2) It is integrated with the multivariate regression model to discover association relationship between complex traits and multifactorial genetic loci. We refer to this second model as sparse Squared-LMM (sLMM2). Further, we extend LMM2/sLMM2 by raising the power of our squared model to the LMMn/sLMMn model. We demonstrate the practical use of our model with synthetic phenotypic variants generated from genetic loci of Arabidopsis Thaliana. The experiment shows that our method achieves a more accurate and significant prediction on the association relationship between traits and loci. We also evaluate our models on collected phenotypes and genotypes with the number of candidate genes that the models could discover. The results suggest the potential and promising usage of our method in genome-wide association studies.


2020 ◽  
Vol 15 (11) ◽  
pp. 1643-1656
Author(s):  
Adrienne Tin ◽  
Anna Köttgen

The past few years have seen major advances in genome-wide association studies (GWAS) of CKD and kidney function–related traits in several areas: increases in sample size from >100,000 to >1 million, enabling the discovery of >250 associated genetic loci that are highly reproducible; the inclusion of participants not only of European but also of non-European ancestries; and the use of advanced computational methods to integrate additional genomic and other unbiased, high-dimensional data to characterize the underlying genetic architecture and prioritize potentially causal genes and variants. Together with other large-scale biobank and genetic association studies of complex traits, these GWAS of kidney function–related traits have also provided novel insight into the relationship of kidney function to other diseases with respect to their genetic associations, genetic correlation, and directional relationships. A number of studies also included functional experiments using model organisms or cell lines to validate prioritized potentially causal genes and/or variants. In this review article, we will summarize these recent GWAS of CKD and kidney function–related traits, explain approaches for downstream characterization of associated genetic loci and the value of such computational follow-up analyses, and discuss related challenges along with potential solutions to ultimately enable improved treatment and prevention of kidney diseases through genetics.


Diabetes ◽  
2015 ◽  
Vol 65 (3) ◽  
pp. 803-817 ◽  
Author(s):  
Alexander Teumer ◽  
Adrienne Tin ◽  
Rossella Sorice ◽  
Mathias Gorski ◽  
Nan Cher Yeo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document