A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes
AbstractThe genetic code is the universal cellular translation table to convert nucleotide into amino acid sequences. Changes to sense codons are expected to be highly detrimental. However, reassignments of single or multiple codons in mitochondria and nuclear genomes demonstrated that the code can evolve. Still, alterations of nuclear genetic codes are extremely rare leaving hypotheses to explain these variations, such as the ‘codon capture’, the ‘genome streamlining’ and the ‘ambiguous intermediate’ theory, in strong debate. Here, we report on a novel sense codon reassignment inPachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons we show that inPachysolenCUG codons are translated as alanine and not as the universal leucine. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by atRNA loss driven codon reassignmentmechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is outside the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects.