scholarly journals Alpha Phase Dynamics Predict Age-Related Visual Working Memory Decline

2016 ◽  
Author(s):  
Tam T. Tran ◽  
Nicole C. Hoffner ◽  
Sara C. LaHue ◽  
Lisa Tseng ◽  
Bradley Voytek

AbstractAlpha oscillations are modulated in response to visual temporal and spatial cues, However, the neural response to alerting cues is less explored, as is how this response is affected by healthy aging. Using scalp EEG, we examined how visual cortical alpha activity relates to working memory performance. Younger (20-30 years) and older (60-70 years) participants were presented with a visual alerting cue uninformative of the position or size of a lateralized working memory array. Older adults showed longer response times overall, and reduced accuracy when memory load was high. Older adults had less consistent cue-evoked phase resetting than younger adults, which predicted worse performance. Alpha phase prior to memory array presentation predicted response time, but the relationship between phase and response time was weaker in older adults. These results suggest that changes in alpha phase dynamics, especially prior to presentation of task-relevant stimuli, potentially contribute to age-related cognitive decline.

2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2019 ◽  
Vol 34 (6) ◽  
pp. 1053-1053
Author(s):  
M Gonzalez Catalan ◽  
C Lindbergh ◽  
A Staffaroni ◽  
S Walters ◽  
K Casaletto ◽  
...  

Abstract Objective Cross-sectional studies have shown age-related differences in working memory (WM), but the trajectory is unclear due to the scarcity of longitudinal studies. Additional research is needed to better characterize the course of age-related changes in WM in older adults. The present study sought to address this gap in the literature by conducting serial assessments of WM in a longitudinally followed cohort of typically aging adults. We hypothesized a significant age × time interaction, such that WM would show pronounced declines with advancing age. Methods 640 functionally intact participants in an aging cohort (clinical dementia rating = 0; age range 52-99, mean age = 75) completed a computerized WM measure, Running Letter Memory (RLM), every ~15 months for up to 8.5 years (mean follow-up = 1.9 years). Longitudinal changes in RLM scores were analyzed using linear mixed effects models, allowing for random slopes and intercepts. All models were adjusted for sex and education. Results RLM performance did not significantly decline over time (b = -.14, p = .43). As hypothesized, there was a significant age × time interaction predicting RLM scores (b = -.08, p = .006). Specifically, RLM performance remained relatively stable (or slightly improved) until around age 75, beyond which increasingly precipitous declines were observed with advancing age. Conclusion The present results suggest that WM performance does not evidence declines until the mid-70s in typically aging adults, at which point increasingly steep decline trajectories are observed with advancing age. These findings highlight that cognitive aging does not occur at a constant rate in late life.


2004 ◽  
Vol 10 (4) ◽  
pp. 489-503 ◽  
Author(s):  
NAOMI CHAYTOR ◽  
MAUREEN SCHMITTER-EDGECOMBE

Age-related declines in working memory performance have been associated with deficits in inhibition, strategy use, processing speed, and monitoring. In the current study, cross-sectional and longitudinal methodologies were used to investigate the relative contribution of these components to age-related changes in working memory. In Experiment 1, a sample of 140 younger and 140 older adults completed an abstract design version of the Self-Ordered Pointing Task modeled after Shimamura and Jurica (1994). Experiment 1 revealed that only processing speed and monitoring explained age differences in SOPT performance. Participants in Experiment 2 were 53 older adults who returned 4 years after the initial testing and 53 young adults. A task that assessed the ability to generate and monitor an internal series of responses as compared to an externally imposed series of responses was also administered. Experiment 2 replicated the key findings from Experiment 1 and provided some further evidence for age-related internal monitoring difficulties. Furthermore, the exploratory longitudinal analysis revealed that older age and lower intellectual abilities tended to be associated with poorer performance on the SOPT at Time 2. (JINS, 2004, 10, 489–503.)


NeuroImage ◽  
2016 ◽  
Vol 143 ◽  
pp. 196-203 ◽  
Author(s):  
Tam T. Tran ◽  
Nicole C. Hoffner ◽  
Sara C. LaHue ◽  
Lisa Tseng ◽  
Bradley Voytek

Remembering ◽  
2021 ◽  
pp. 169-188
Author(s):  
Fergus I. M. Craik

Memory performance declines in the course of healthy aging, and this chapter discusses some reasons why this may be so. The author suggests that there is an age-related decline in both processing resources and in cognitive control, and that these deficiencies underlie less efficient encoding and retrieval processes. Age-related memory losses are greater in some tasks than in others, however, and the case is made that losses are relatively slight in situations that involve substantial amounts of environmental support and therefore require small amounts of self-initiated activity. In turn, the inefficiency of self-initiated activities is attributed to age-related deficiencies in frontal lobe functions. Age-related deficits in recall performance (which is heavily reliant on self-initiation) are reduced in a recognition test, which embodies greater environmental support. Deficits were also reduced by the use of pictures as materials, and there were no age differences in the ability to hold high-valued words in working memory. These effects are illustrated by experiments carried out by the author and collaborators.


2020 ◽  
Vol 10 (8) ◽  
pp. 556
Author(s):  
Mariana R. Maniglia ◽  
Alessandra S. Souza

Healthy aging is associated with decline in the ability to maintain visual information in working memory (WM). We examined whether this decline can be explained by decreases in the ability to filter distraction during encoding or to ignore distraction during memory maintenance. Distraction consisted of irrelevant objects (Exp. 1) or irrelevant features of an object (Exp. 2). In Experiment 1, participants completed a spatial WM task requiring remembering locations on a grid. During encoding or during maintenance, irrelevant distractor positions were presented. In Experiment 2, participants encoded either single-feature (colors or orientations) or multifeature objects (colored triangles) and later reproduced one of these features using a continuous scale. In multifeature blocks, a precue appeared before encoding or a retrocue appeared during memory maintenance indicating with 100% certainty to the to-be-tested feature, thereby enabling filtering and ignoring of the irrelevant (not-cued) feature, respectively. There were no age-related deficits in the efficiency of filtering and ignoring distractor objects (Exp. 1) and of filtering irrelevant features (Exp. 2). Both younger and older adults could not ignore irrelevant features when cued with a retrocue. Overall, our results provide no evidence for an aging deficit in using attention to manage visual WM.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Stephan Heinzel ◽  
Thomas G. Riemer ◽  
Stefanie Schulte ◽  
Johanna Onken ◽  
Andreas Heinz ◽  
...  

Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults.Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years) and 25 older (aged 60–75 years) healthy adults. Participants underwent adaptive training in then-back working memory task over 12 sessions under increasing difficulty conditions.Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P<.001), which was larger in younger as compared to older adults (P<.001). Age-related differences were qualified by an interaction with COMT genotype (P<.001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults.Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.


2021 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Nigel Rogasch ◽  
John Semmler ◽  
Mitchell Goldsworthy

Both selective attention and visual working memory (WM) performance are vulnerable to age related decline. Older adults perform worse on, and are less able to modulate oscillatory power in the alpha frequency range (8-12 Hz) than younger adults in WM tasks involving predictive cues about ‘where’ or ‘when’ a stimulus will be present. However, no study has investigated whether alpha power is modulated by cues predicting ‘how long’ an encoding duration will be. To test this, we recorded electroencephalography (EEG) while 24 younger (aged 18-33 years) and 23 older (aged 60-77 years) adults completed a modified delay match-to-sample task where participants were cued to the duration (either 0.1 s or 0.5 s) of an encoding stimulus consisting of 4 coloured squares. We found: (1) predictive cues increased WM capacity, but long encoding duration trials led to reduced WM capacity in both age groups, compared to short encoding duration trials; (2) no evidence for differences in preparatory alpha power between predictive and neutral cues for either short or long encoding durations, but preparatory alpha suppression was weaker in older adults; (3) retention period oscillatory power differed between short and long encoding duration trials, but these differences were no longer present when comparing the trial types from the onset of the encoding stimulus; and (4) oscillatory power in the preparatory and retention periods were not related to task performance. Our results suggest that preparatory alpha power is not modulated by predictive cues towards encoding duration during visual WM, however, reductions in alpha/beta oscillatory power during visual WM retention may be linked to the encoding stimulus, rather than a process specific to WM retention.


2017 ◽  
Vol 24 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Bryce P. Mulligan ◽  
Colette M. Smart ◽  
Sidney J. Segalowitz ◽  
Stuart W.S. MacDonald

AbstractObjectives: We sought to clarify the nature of self-reported cognitive function among healthy older adults by considering the short-term, within-person association (coupling) of subjective cognitive function with objective cognitive performance. We expected this within-person coupling to differ between persons as a function of self-perceived global cognitive decline and depression, anxiety, or neuroticism. Methods: This was an intensive measurement (short-term longitudinal) study of 29 older adult volunteers between the ages of 65 and 80 years without an existing diagnosis of dementia or mild cognitive impairment. Baseline assessment included neuropsychological testing and self-reported depression, anxiety, and neuroticism, as well as self- and informant-reported cognitive decline (relative to 10 years previously). Intensive within-person measurement occasions included subjective ratings of cognitive function paired with performance on a computerized working memory (n-back) task; each participant attended four or five assessments separated by intervals of at least one day. Statistical analysis was comprised of multilevel linear regression. Results: Comparison of models suggested that both neuroticism and self-rated cognitive decline explained unique variance in the within-person, across-occasion coupling of subjective cognitive function with objective working memory performance. Conclusions: Self-ratings of cognition may accurately reflect day-to-day variations in objective cognitive performance among older adults, especially for individuals lower in neuroticism and higher in self-reported cognitive decline. Clinicians should consider these individual differences when determining the validity of complaints about perceived cognitive declines in the context of otherwise healthy aging. (JINS, 2018, 24, 57–66)


2020 ◽  
pp. 174702182096071
Author(s):  
Richard J Allen ◽  
Amy L Atkinson ◽  
Louise A Brown Nicholls

Visual working memory for features and bindings is susceptible to age-related decline. Two experiments were used to examine whether older adults are able to strategically prioritise more valuable information in working memory and whether this could reduce age-related impairments. Younger (18–33 years) and older (60–90 years) adults were presented with coloured shapes and, following a brief delay, asked to recall the feature that had accompanied the probe item. In Experiment 1, participants were either asked to prioritise a more valuable object in the array (serial position 1, 2, or 3) or to treat them all equally. Older adults exhibited worse overall memory performance but were as able as younger adults to prioritise objects. In both groups, this ability was particularly apparent at the middle serial position. Experiment 2 then explored whether younger and older adults’ prioritisation is affected by presentation time. Replicating Experiment 1, older adults were able to prioritise the more valuable object in working memory, showing equivalent benefits and costs as younger adults. However, processing speed, as indexed by presentation time, was shown not to limit strategic prioritisation in either age group. Taken together, these findings demonstrate that, although older adults have poorer visual working memory overall, the ability to strategically direct attention to more valuable items in working memory is preserved across ageing.


Sign in / Sign up

Export Citation Format

Share Document