scholarly journals CRISPR-Cas9 targeted deletion of the C9orf72 repeat expansion mutation corrects cellular phenotypes in patient-derived iPS cells

2016 ◽  
Author(s):  
Mochtar Pribadi ◽  
Zhongan Yang ◽  
Tanya S. Kim ◽  
Elliot W. Swartz ◽  
Alden Y. Huang ◽  
...  

AbstractThe large hexanucleotide (GGGGCC) repeat expansion in the non-coding promoter region of C9orf72 is the leading cause of Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Mechanisms underlying neurodegeneration are not clear, and both a C9orf72 loss of function and a gain of toxicity, in the form of RNA foci or dipeptide repeat deposition, are implicated. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9-mediated genome editing is an attractive strategy for disease modeling and therapeutic intervention. Here we show that this system can be utilized to completely remove the large repeat expansion mutation within C9orf72 in patient-derived induced pluripotent stem (iPS) cells. Removal of the mutation prevented RNA foci formation and promoter hypermethylation, two phenotypes of the C9orf72 mutation. Interestingly, these changes did not significantly alter C9orf72 expression at the mRNA or protein level. This work provides a proof-of-principle for the use of CRISPR-Cas9-mediated excision of the pathogenic C9orf72 repeat expansion as a therapeutic strategy in FTD/ALS.One Sentence SummaryCRISPR-Cas9-mediated excision of the large C9orf72 repeat expansion mutation rescues RNA foci formation and promoter hypermethylation without altering C9orf72 transcript and protein expression.


2017 ◽  
Vol 27 (4) ◽  
pp. 518-524 ◽  
Author(s):  
Bhuvaneish T. Selvaraj ◽  
Matthew R. Livesey ◽  
Siddharthan Chandran


2021 ◽  
Vol 4 (4) ◽  
pp. e202000764
Author(s):  
Arun Pal ◽  
Benedikt Kretner ◽  
Masin Abo-Rady ◽  
Hannes Glaβ ◽  
Banaja P Dash ◽  
...  

Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient—albeit to a smaller extent—to induce premature distal axonal trafficking deficits and increased DSBs.





2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Marc Thier ◽  
Bernhard Münst ◽  
Stephanie Mielke ◽  
Frank Edenhofer

Induced pluripotent stem (iPS) cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT) and Sox2 (Sox2-TAT) proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.



2021 ◽  
Vol 15 ◽  
Author(s):  
Iris-Stefania Pasniceanu ◽  
Manpreet Singh Atwal ◽  
Cleide Dos Santos Souza ◽  
Laura Ferraiuolo ◽  
Matthew R. Livesey

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.



2016 ◽  
Vol 397 (11) ◽  
pp. 1205-1213 ◽  
Author(s):  
Wassim Eid ◽  
Wafaa Abdel-Rehim

Abstract Somatic cells can be reprogramed into induced pluripotent stem (iPS) cells by defined factors, which provide a powerful basis for personalized stem-cell based therapies. However, cellular reprograming is an inefficient and metabolically demanding process commonly associated with obstacles that hamper further use of this technology. Spontaneous differentiation of iPS cells cultures represents a significant hurdle that hinder obtaining high quality iPS cells for further downstream experimentation. In this study, we found that a natural compound, vitamin C, augmented pluripotency in iPS cells and reduced unwanted spontaneous differentiation during iPS cells maintenance. Gene expression analysis showed that vitamin C increased the expression of the histone demethylase JARID1A. Furthermore, through gain- and loss-of-function approaches, we show that JARID1A is a key effector in promoting pluripotency and reducing differentiation downstream of vitamin C. Our results therefore highlight a straightforward method for improving the pluripotency and quality of iPS cells; it also shows a possible role for H3K4me2/3 in cell fate determination and establishes a link between vitamin C and epigenetic regulation.



2009 ◽  
Vol 106 (37) ◽  
pp. 15768-15773 ◽  
Author(s):  
René Maehr ◽  
Shuibing Chen ◽  
Melinda Snitow ◽  
Thomas Ludwig ◽  
Lisa Yagasaki ◽  
...  

Type 1 diabetes (T1D) is the result of an autoimmune destruction of pancreatic β cells. The cellular and molecular defects that cause the disease remain unknown. Pluripotent cells generated from patients with T1D would be useful for disease modeling. We show here that induced pluripotent stem (iPS) cells can be generated from patients with T1D by reprogramming their adult fibroblasts with three transcription factors (OCT4, SOX2, KLF4). T1D-specific iPS cells, termed DiPS cells, have the hallmarks of pluripotency and can be differentiated into insulin-producing cells. These results are a step toward using DiPS cells in T1D disease modeling, as well as for cell replacement therapy.



2012 ◽  
Vol 8 (4S_Part_20) ◽  
pp. P736-P736
Author(s):  
Julie van der Zee ◽  
Ilse Gijselinck ◽  
Lubina Dillen ◽  
Tim Van Langenhove ◽  
Anne Sieben ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document