scholarly journals Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women

2016 ◽  
Author(s):  
Richard A. I. Bethlehem ◽  
Michael V. Lombardo ◽  
Meng-Chuan Lai ◽  
Bonnie Auyeung ◽  
Sarah K. Crockford ◽  
...  

AbstractOxytocin may influence various human behaviors and the connectivity across subcortical and cortical networks. Previous oxytocin studies are male-biased and often constrained by task-based inferences. Here we investigate the impact of oxytocin on resting state connectivity between subcortical and cortical networks in women. We collected resting state fMRI data on 26 typically-developing women 40 minutes following intranasal oxytocin administration using a double-blind placebo-controlled crossover design. Independent components analysis (ICA) was applied to examine connectivity between networks. An independent analysis of oxytocin receptor (OXTR) gene expression in human subcortical and cortical areas was carried out to determine plausibility of direct oxytocin effects on OXTR. In women, OXTR was highly expressed in striatal and other subcortical regions, but showed modest expression in cortical areas. Oxytocin increased connectivity between corticostriatal circuitry typically involved in reward, emotion, social-communication, language, and pain processing. This effect was 1.39 standard deviations above the null effect of no difference between oxytocin and placebo. This oxytocin-related effect on corticostriatal connectivity covaried with autistic traits, such that oxytocin-related increase in connectivity was stronger in individuals with higher autistic traits. In sum, oxytocin strengthened corticostriatal connectivity in women, particularly with cortical networks that are involved in social-communicative, motivational, and affective processes. This effect may be important for future work on neurological and psychiatric conditions (e.g., autism), particularly through highlighting how oxytocin may operate differently for subsets of individuals.

2014 ◽  
Vol 44 (15) ◽  
pp. 3341-3356 ◽  
Author(s):  
R. C. Wolf ◽  
F. Sambataro ◽  
N. Vasic ◽  
M. S. Depping ◽  
P. A. Thomann ◽  
...  

Background.Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's ‘resting state’ could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients.Method.Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and ‘biological parametric mapping’ analyses to investigate the impact of atrophy on neural activity.Results.Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition.Conclusions.This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.


2021 ◽  
Author(s):  
Tomokazu Tsurugizawa ◽  
Daisuke Yoshimaru

AbstractA few studies have compared the static functional connectivity between awake and anaesthetized states in rodents by resting-state fMRI. However, impact of anaesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anaesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under anaesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric connections were key connections for anaesthetized condition from awake. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anaesthesia. These results indicate that typical anaesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.HighlightsResting-state fMRI was compared between awake and anaesthetized in the same mice.Anaesthesia induced a widespread decrease of static functional connectivity.Anaesthesia strengthened local connections within the cortex.fALFF in the thalamus was decreased by anaesthesia.


2019 ◽  
Author(s):  
Meret Branscheidt ◽  
Naveed Ejaz ◽  
Jing Xu ◽  
Mario Widmer ◽  
Michelle D. Harran ◽  
...  

AbstractCortical reorganization has been suggested as mechanism for recovery after stroke. It has been proposed that a form of cortical reorganization (changes in functional connectivity between brain areas) can be assessed with resting-state fMRI. Here we report the largest longitudinal data-set in terms of overall sessions in 19 patients with subcortical stroke and 11 controls. Patients were imaged up to 5 times over one year. We found no evidence for post-stroke cortical reorganization despite substantial behavioral recovery. These results could be construed as questioning the value of resting-state imaging. Here we argue instead that they are consistent with other emerging reasons to challenge the idea of motor recovery-related cortical reorganization post-stroke when conceived as changes in connectivity between cortical areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xinzhi Cao ◽  
Zhiyu Qian ◽  
Qiang Xu ◽  
Junshu Shen ◽  
Zhiqiang Zhang ◽  
...  

Examining the resting-state networks (RSNs) may help us to understand the neural mechanism of the frontal lobe epilepsy (FLE). Resting-state functional MRI (fMRI) data were acquired from 46 patients with FLE (study group) and 46 age- and gender-matched healthy subjects (control group). The independent component analysis (ICA) method was used to identify RSNs from each group. Compared with the healthy subjects, decreased functional connectivity was observed in all the networks; however, in some areas of RSNs, functional connectivity was increased in patients with FLE. The duration of epilepsy and the seizure frequency were used to analyze correlation with the regions of interest (ROIs) in the nine RSNs to determine their influence on FLE. The functional network connectivity (FNC) was used to study the impact on the disturbance and reorganization of FLE. The results of this study may offer new insight into the neuropathophysiological mechanisms of FLE.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Monika Pupíková ◽  
Patrik Šimko ◽  
Martin Gajdoš ◽  
Irena Rektorová

Many cognitive functions, including working memory, are processed within large-scale brain networks. We targeted the right frontoparietal network (FPN) with one session of transcranial direct current stimulation (tDCS) in an attempt to modulate the cognitive speed of a visual working memory task (WMT) in 27 young healthy subjects using a double-blind crossover design. We further explored the neural underpinnings of induced changes by performing resting-state fMRI prior to and immediately after each stimulation session with the main focus on the interaction between a task-positive FPN and a task-negative default mode network (DMN). Twenty minutes of 2 mA anodal tDCS was superior to sham stimulation in terms of cognitive speed manipulation of a subtask with processing of objects and tools in unconventional views (i.e., the higher cognitive load subtask of the offline WMT). This result was linked to the magnitude of resting-state functional connectivity decreases between the stimulated FPN seed and DMN seeds. We provide the first evidence for the action reappraisal mechanism of object and tool processing. Modulation of cognitive speed of the task by tDCS was reflected by FPN-DMN cross-talk changes.


2021 ◽  
Author(s):  
Camille Giacometti ◽  
Audrey Dureux ◽  
Delphine Autran-Clavagnier ◽  
Charles C. R. E. Wilson ◽  
Jerome Sallet ◽  
...  

A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional Magnetic Resonance Imaging (rs-fMRI) in anaesthetized non-human primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity (FC) organization of a well characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques revealed a similar FC pattern to that previously uncovered in the human brain. Rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas while caudal seeds in the cingulate sulcus displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrates that the FC pattern of cingulo-frontal cortical networks is preserved from macaque to human but some of its properties can only be observed in the awake state, warranting significant caution when comparing FC patterns across species under different states.


2019 ◽  
Author(s):  
Rajan Kashyap ◽  
Sagarika Bhattacharjee ◽  
B.T. Thomas Yeo ◽  
SH Annabel Chen

AbstractPatterns in resting-state fMRI (rs-fMRI) are widely used to characterize the trait effects of brain function. In this aspect, multiple rs-fMRI scans from single subjects can provide interesting clues about the rs-fMRI patterns, though scan-to-scan variability pose challenges. Therefore, rs-fMRI’s are either concatenated or the functional connectivity is averaged. This leads to loss of information. Here, we use an alternative way to extract the rs-fMRI features that are common across all the scans by applying Common-and-Orthogonal-Basis-Extraction (COBE) technique. To address this, we employed rs-fMRI of 788 subjects from the human connectome project and estimated the common-COBE-component of each subject from the four rs-fMRI runs. Since the common-COBE-component are specific to a subject, the pattern was used to classify the subjects based on the similarity/dissimilarity of the features. The subset of subjects (n=107) with maximal-COBE-Dissimilarity (MCD) was extracted and the remaining subjects (n = 681) formed the COBE-similarity (CS) group. The distribution of weights of the common-COBE-component for the two groups across rs-fMRI networks and subcortical regions was evaluated. We found the weights in the default mode network to be lower in the MCD compared to the CS. We compared the scores of 69 behavioral measures and found 6 behaviors related to the use of marijuana, illicit drugs, alcohol, and tobacco; and including a measure of antisocial personality to differentiate the two groups. Gender differences were also significant. Altogether findings suggested that subtypes exist even in healthy control population and comparison studies (Case vs Control) need to be mindful of it.


NeuroImage ◽  
2013 ◽  
Vol 65 ◽  
pp. 499-510 ◽  
Author(s):  
Najmeh Khalili-Mahani ◽  
Catie Chang ◽  
Matthias J. van Osch ◽  
Ilya M. Veer ◽  
Mark A. van Buchem ◽  
...  

2014 ◽  
Vol 26 (4) ◽  
pp. 914-926 ◽  
Author(s):  
Janine Bijsterbosch ◽  
Stephen Smith ◽  
Sophie Forster ◽  
Oliver P. John ◽  
Sonia J. Bishop

Resting state fMRI may help identify markers of risk for affective disorder. Given the comorbidity of anxiety and depressive disorders and the heterogeneity of these disorders as defined by DSM, an important challenge is to identify alterations in resting state brain connectivity uniquely associated with distinct profiles of negative affect. The current study aimed to address this by identifying differences in brain connectivity specifically linked to cognitive and physiological profiles of anxiety, controlling for depressed affect. We adopted a two-stage multivariate approach. Hierarchical clustering was used to independently identify dimensions of negative affective style and resting state brain networks. Combining the clustering results, we examined individual differences in resting state connectivity uniquely associated with subdimensions of anxious affect, controlling for depressed affect. Physiological and cognitive subdimensions of anxious affect were identified. Physiological anxiety was associated with widespread alterations in insula connectivity, including decreased connectivity between insula subregions and between the insula and other medial frontal and subcortical networks. This is consistent with the insula facilitating communication between medial frontal and subcortical regions to enable control of physiological affective states. Meanwhile, increased connectivity within a frontoparietal–posterior cingulate cortex–precunous network was specifically associated with cognitive anxiety, potentially reflecting increased spontaneous negative cognition (e.g., worry). These findings suggest that physiological and cognitive anxiety comprise subdimensions of anxiety-related affect and reveal associated alterations in brain connectivity.


Sign in / Sign up

Export Citation Format

Share Document