scholarly journals Predicting the impact of non-coding variants on DNA methylation

2016 ◽  
Author(s):  
Haoyang Zeng ◽  
David K. Gifford

AbstractDNA methylation plays a crucial role in the establishment of tissue-specific gene expression and the regulation of key biological processes. However, our present inability to predict the effect of genome sequence variation on DNA methylation precludes a comprehensive assessment of the consequences of non-coding variation. We introduce CpGenie, a sequence-based framework that learns a regulatory code of DNA methylation using a deep convolutional neural network and uses this network to predict the impact of sequence variation on proximal CpG site DNA methylation. CpGenie produces allele-specific DNA methylation prediction with single-nucleotide sensitivity that enables accurate prediction of methylation quantitative trait loci (meQTL). We demonstrate that CpGenie prioritizes validated GWAS SNPs, and contributes to the prediction of functional non-coding variants, including expression quantitative trait loci (eQTL) and disease-associated mutations. CpGenie is publicly available to assist in identifying and interpreting regulatory non-coding variants.

2018 ◽  
Author(s):  
F. Delahaye ◽  
C. Do ◽  
Y. Kong ◽  
R. Ashkar ◽  
M. Sala ◽  
...  

AbstractBackgroundFrom genomic association studies, quantitative trait loci analysis, and epigenomic mapping, it is evident that significant efforts are necessary to define genetic-epigenetic interactions and understand their role in disease susceptibility and progression. For this reason, an analysis of the effects of genetic variation on gene expression and DNA methylation in human placentas at high resolution and whole-genome coverage will have multiple mechanistic and practical implications.ResultsBy producing and analyzing DNA sequence variation (n=303), DNA methylation (n=303) and mRNA expression data (n=80) from placentas from healthy women, we investigate the regulatory landscape of the human placenta and offer analytical approaches to integrate different types of genomic data and address some potential limitations of current platforms. We distinguish two profiles of interaction between expression and DNA methylation, revealing linear or bimodal effects, reflecting differences in genomic context, transcription factor recruitment, and possibly cell subpopulations.ConclusionsThese findings help to clarify the interactions of genetic, epigenetic, and transcriptional regulatory mechanisms in normal human placentas. They also provide strong evidence for genotype-driven modifications of transcription and DNA methylation in normal placentas. In addition to these mechanistic implications, the data and analytical methods presented here will improve the interpretability of genome-wide and epigenome-wide association studies for human traits and diseases that involve placental functions.Author summaryThe placenta is a critical organ playing multiple roles including oxygen and metabolite transfer from mother to fetus, hormone production, and vascular perfusion. With this study, we aimed to deliver a placenta-specific regulatory map based on a combination of publicly available and newly generated data. To complete this reference, we obtained genotype information (n=303), DNA methylation (n=303) and expression data (n=80) for placentas from healthy women. Our analysis of methylation and expression quantitative trait loci (QTLs) and correlations between methylation and expression data were designed to identify fundamental associations between genome, transcriptome, and epigenome in this key fetal organ. The results provide high-resolution genetic and epigenetic maps specific to the placenta based on a representative ethnically diverse cohort. As interest and efforts are growing to better understand the etiology of placental disease and the impact of the environment on placental function these data will provide a reference and enhance future investigations.


2016 ◽  
Author(s):  
Pala M. ◽  
Z. Zappala ◽  
M. Marongiu ◽  
X. Li ◽  
J.R. Davis ◽  
...  

ABSTRACTIdentifying functional non-coding variants can enhance genome interpretation and inform novel genetic risk factors. We used whole genomes and peripheral white blood cell transcriptomes from 624 Sardinian individuals to identify non-coding variants that contribute to population, family, and individual differences in transcript abundance. We identified 21,183 independent expression quantitative trait loci (eQTLs) and 6,768 independent splicing quantitative trait loci (sQTLs) influencing 73 and 41% of all tested genes. When we compared Sardinian eQTLs to those previously identified in Europe, we identified differentiated eQTLs at genes involved in malarial resistance and multiple sclerosis, reflecting the long-term epidemiological history of the island’s population. Taking advantage of pedigree data for the population sample, we identify segregating patterns of outlier gene expression and allelic imbalance in 61 Sardinian trios. We identified 809 expression outliers (median z-score of 2.97) averaging 13.3 genes with outlier expression per individual. We then connected these outlier expression events to rare non-coding variants. Our results provide new insight into the effects of non-coding variants and their relationship to population history, traits and individual genetic risk.


2019 ◽  
Vol 48 (D1) ◽  
pp. D856-D862 ◽  
Author(s):  
Wubin Ding ◽  
Jiwei Chen ◽  
Guoshuang Feng ◽  
Geng Chen ◽  
Jun Wu ◽  
...  

Abstract Aberrant DNA methylation plays an important role in cancer progression. However, no resource has been available that comprehensively provides DNA methylation-based diagnostic and prognostic models, expression–methylation quantitative trait loci (emQTL), pathway activity-methylation quantitative trait loci (pathway-meQTL), differentially variable and differentially methylated CpGs, and survival analysis, as well as functional epigenetic modules for different cancers. These provide valuable information for researchers to explore DNA methylation profiles from different aspects in cancer. To this end, we constructed a user-friendly database named DNA Methylation Interactive Visualization Database (DNMIVD), which comprehensively provides the following important resources: (i) diagnostic and prognostic models based on DNA methylation for multiple cancer types of The Cancer Genome Atlas (TCGA); (ii) meQTL, emQTL and pathway-meQTL for diverse cancers; (iii) Functional Epigenetic Modules (FEM) constructed from Protein-Protein Interactions (PPI) and Co-Occurrence and Mutual Exclusive (COME) network by integrating DNA methylation and gene expression data of TCGA cancers; (iv) differentially variable and differentially methylated CpGs and differentially methylated genes as well as related enhancer information; (v) correlations between methylation of gene promoter and corresponding gene expression and (vi) patient survival-associated CpGs and genes with different endpoints. DNMIVD is freely available at http://www.unimd.org/dnmivd/. We believe that DNMIVD can facilitate research of diverse cancers.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumandeep K. Bazzer ◽  
Larry C. Purcell

Abstract A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.


2004 ◽  
Vol 44 (7) ◽  
pp. 669 ◽  
Author(s):  
W. Barendse ◽  
R. Bunch ◽  
M. Thomas ◽  
S. Armitage ◽  
S. Baud ◽  
...  

The TG5 (thyroglobulin 5′ leader sequence) single nucleotide polymorphism has been associated with marbling in cattle fed for periods longer than 250 days. To test whether the association could be detected in diverse cattle, fed for less than 250 days, and to measure the size of the effect, we sampled 1750 cattle from the AMH Toowoomba feedlot. These cattle were sampled on 28 separate days, over 9 months. Their marbling scores covered the complete range. We found that the TG5 single nucleotide polymorphism was associated with marbling scores (P<0.05) and estimated that TG5 genotypes explained 6.5% of the residual deviance for the marbling phenotype. We also found that the '3' allele was more frequent in animals with higher marbling scores. The consistency of the allelic association between studies and, in particular, the association found in diverse cattle, indicate that the TG5 polymorphism can be used as a breeding tool and possibly a feedlot entry tool. To estimate the size of the genetic region in which the marbling quantitative trait loci are located, we tested the nearby DNA markers CSSM66 and BMS1747. These do not show allelic associations to marbling. The consistency of the allelic association between studies, the lack of association to nearby DNA markers and the complementary information on gene action of genes near Thyroglobulin suggest that DNA sequence variations, in or near the Thyroglobulin gene sequence, are the likely causes for the marbling quantitative trait loci. Further studies of single nucleotide polymorphism in and near the Thyroglobulin DNA sequence should allow causal mutations for the effect to be identified.


Sign in / Sign up

Export Citation Format

Share Document