scholarly journals The demographic and adaptive history of the African green monkey

2017 ◽  
Author(s):  
Susanne P. Pfeifer

AbstractRelatively little is known about the evolutionary history of the African green monkey (genus Chlorocebus) due to the lack of sampled polymorphism data from wild populations. Yet, this characterization of genetic diversity is not only critical for a better understanding of their own history, but also for human biomedical research given that they are one of the most widely used primate models. Here, I analyze the demographic and selective history of the African green monkey, utilizing one of the most comprehensive catalogs of wild genetic diversity to date, consisting of 1,795,643 autosomal single nucleotide polymorphisms in 25 individuals, representing all five major populations: C. a. aethiops, C. a. cynosurus, C. a. pygerythrus, C. a. sabaeus, and C. a tantalus. Assuming a mutation rate of 5.9 × 10−9 per base pair per generation and a generation time of 8.5 years, divergence time estimates range from 523-621kya for the basal split of C. a. aethiops from the other four populations. Importantly, the resulting tree characterizing the relationship and split-times between these populations differs significantly from that presented in the original genome paper, owing to their neglect of within-population variation when calculating between population-divergence. In addition, I find that the demographic history of all five populations is well explained by a model of population fragmentation and isolation, rather than novel colonization events. Finally, utilizing these demographic models as a null, I investigate the selective history of the populations, identifying candidate regions potentially related to adaptation in response to pathogen exposure.

Author(s):  
Paolo Momigliano ◽  
Ann-Britt Florin ◽  
Juha Merilä

Abstract Testing among competing demographic models of divergence has become an important component of evolutionary research in model and non-model organisms. However, the effect of unaccounted demographic events on model choice and parameter estimation remains largely unexplored. Using extensive simulations, we demonstrate that under realistic divergence scenarios, failure to account for population size (Ne) changes in daughter and ancestral populations leads to strong biases in divergence time estimates as well as model choice. We illustrate these issues reconstructing the recent demographic history of North Sea and Baltic Sea turbots (Schopthalmus maximus) by testing 16 Isolation with Migration (IM) and 16 Secondary Contact (SC) scenarios, modelling changes in Ne as well as the effects of linked selection and barrier loci. Failure to account for changes in Ne resulted in selecting SC models with long periods of isolation and divergence times preceding the formation of the Baltic Sea. In contrast, models accounting for Ne changes suggest recent (<6 kya) divergence with constant gene flow. We further show how interpreting genomic landscapes of differentiation can help discerning among competing models. For example, in the turbots data islands of differentiation show signatures of recent selective sweeps, rather than old divergence resisting secondary introgression. The results have broad implications for the study of population divergence by high-lighting the potential effects of unmodeleld changes in Ne on demographic inference. Tested models should aim at representing realistic divergence scenarios for the target taxa, and extreme caution should always be exercised when interpreting results of demographic modelling.


2010 ◽  
Vol 60 (4) ◽  
pp. 449-465
Author(s):  
Wen Longying ◽  
Zhang Lixun ◽  
An Bei ◽  
Luo Huaxing ◽  
Liu Naifa ◽  
...  

AbstractWe have used phylogeographic methods to investigate the genetic structure and population history of the endangered Himalayan snowcock (Tetraogallus himalayensis) in northwestern China. The mitochondrial cytochrome b gene was sequenced of 102 individuals sampled throughout the distribution range. In total, we found 26 different haplotypes defined by 28 polymorphic sites. Phylogenetic analyses indicated that the samples were divided into two major haplogroups corresponding to one western and one eastern clade. The divergence time between these major clades was estimated to be approximately one million years. An analysis of molecular variance showed that 40% of the total genetic variability was found within local populations, 12% among populations within regional groups and 48% among groups. An analysis of the demographic history of the populations suggested that major expansions have occurred in the Himalayan snowcock populations and these correlate mainly with the first and the second largest glaciations during the Pleistocene. In addition, the data indicate that there was a population expansion of the Tianshan population during the uplift of the Qinghai-Tibet Plateau, approximately 2 million years ago.


2021 ◽  
pp. 1-28
Author(s):  
Yoshimasa Kumekawa ◽  
Haruka Fujimoto ◽  
Osamu Miura ◽  
Ryo Arakawa ◽  
Jun Yokoyama ◽  
...  

Abstract Harvestmen (Arachnida: Opiliones) are soil animals with extremely low dispersal abilities that experienced allopatric differentiation. To clarify the morphological and phylogenetic differentiation of the endemic harvestman Zepedanulus ishikawai (Suzuki, 1971) (Laniatores: Epedanidae) in the southern part of the Ryukyu Archipelago, we conducted molecular phylogenetic analyses and divergence time estimates based on CO1 and 16S rRNA sequences of mtDNA, the 28S rRNA sequence of nrDNA, and the external morphology. A phylogenetic tree based on mtDNA sequences indicated that individuals of Z. ishikawai were monophyletic and were divided into clade I and clade II. This was supported by the nrDNA phylogenetic tree. Although clades I and II were distributed sympatrically on all three islands examined (Ishigaki, Iriomote, and Yonaguni), heterogeneity could not be detected by polymerase chain reaction–restriction fragment length polymorphism of nrDNA, indicating that clades I and II do not have a history of hybridisation. Also, several morphological characters differed significantly between individuals of clade I and clade II. The longstanding isolation of the southern Ryukyus from the surrounding islands enabled estimation of the original morphological characters of both clades of Z. ishikawai.


2021 ◽  
Vol 118 (34) ◽  
pp. e2104315118
Author(s):  
Pasquale Tripodi ◽  
Mark Timothy Rabanus-Wallace ◽  
Lorenzo Barchi ◽  
Sandip Kale ◽  
Salvatore Esposito ◽  
...  

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker–trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE—using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions—was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


2013 ◽  
Vol 59 (4) ◽  
pp. 458-474 ◽  
Author(s):  
Sen Song ◽  
Shijie Bao ◽  
Ying Wang ◽  
Xinkang Bao ◽  
Bei An ◽  
...  

Abstract Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in extant species. Although the effects of recent glacial cycles on genetic diversity have been well studied on species in Europe and North America, genetic legacy of species in the Pleistocene in north and northwest of China where glaciations was not synchronous with the ice sheet development in the Northern Hemisphere or or had little or no ice cover during the glaciations’ period, remains poorly understood. Here we used phylogeographic methods to investigate the genetic structure and population history of the chukar partridge Alec-toris chukar in north and northwest China. A 1,152 – 1,154 bp portion of the mtDNA CR were sequenced for all 279 specimens and a total number of 91 haplotypes were defined by 113 variable sites. High levels of gene flow were found and gene flow estimates were greater than 1 for most population pairs in our study. The AMOVA analysis showed that 81% and 16% of the total genetic variability was found within populations and among populations within groups, respectively. The demographic history of chukar was examined using neutrality tests and mismatch distribution analyses and results indicated Late Pleistocene population expansion. Results revealed that most populations of chukar experienced population expansion during 0.027 ? 0.06 Ma. These results are at odds with the results found in Europe and North America, where population expansions occurred after Last Glacial Maximum (LGM, 0.023 to 0.018 Ma). Our results are not consistent with the results from avian species of Tibetan Plateau, either, where species experienced population expansion following the retreat of the extensive glaciation period (0.5 to 0.175 Ma).


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184526 ◽  
Author(s):  
Sorravis Lapbenjakul ◽  
Watcharaporn Thapana ◽  
Panupon Twilprawat ◽  
Narongrit Muangmai ◽  
Thiti Kanchanaketu ◽  
...  

2020 ◽  
Author(s):  
Pierre Teodósio Felix ◽  
Dallynne Bárbara Ramos Venâncio ◽  
Eduarda Doralice Alves Braz Da Silva ◽  
Robson da Silva Ramos

AbstractIn this work, we evaluated the levels of genetic diversity in 18 genomes of SARS-CoV-2 carrying the D614G mutation, coming from Malaysia and Venezuela and publicly available at the National Center of Biotechnology and Information (NCBI). These haplotypes were previously used for phylogenetic analysis, following the LaBECom protocols. All gaps and unconserved sites were extracted for the construction of a phylogenetic tree. As specific methodologies for paired FST estimators, Molecular Variance (AMOVA), Genetic Distance, mismatch, demographic and spatial expansion analyses, molecular diversity and evolutionary divergence time analyses, 20,000 random permutations were always used. The results revealed the presence of only 57 sites of polymorphic and parsimonium-informative among the 29,827bp analyzed and the analyses based on FST values confirmed the presence of two distinct genetic entities with fixation index of 22% and with a higher component of population variation (78.14%). Tau variations revealed a significant time of divergence, supported by mismatch analysis of the observed distribution (τ = 42%). It is safe to say that the small number of existing polymorphisms should not reflect major changes in the protein products of viral populations in both countries and this consideration provides the safety that, although there are differences in the haplotypes studied, these differences are minimal for both regions analyzed geographically and, therefore, it seems safe to extrapolate the levels of polymorphism and molecular diversity found in the samples for other mutant genomes of SARS-CoV-2 in other countries. This reduces speculation about the possibility of large differences between mutant strains of SARS-CoV-2 (D614G) and wild strains, at least at the level of their protein products, although the mutant form has higher transmission speed and infection. The analyses suggest that possible variations in protein products, of the wild virus in relation to its mutant form, should be minimal, bringing peace of mind as to the increased risk of death from the new form of the virus, as well as possible problems of gradual adjustments in some molecular targets for vaccines.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yong-Chao Su ◽  
Shan-Hui Su ◽  
Han-Yun Li ◽  
Hurng-Yi Wang ◽  
Sin-Che Lee

Abstract Many fisheries management and conservation plans are based on the genetic structure of organisms in pelagic ecosystems; however, these structures tend to vary over time, particularly in cyclic ocean currents. We performed genetic analyses on the populations of the pelagic fish, Megalaspis cordyla (Osteichthyes: Carangidae) in the area surrounding Taiwan during 2000–2001. Genotyping was performed on M. cordyla collected seasonally around Taiwan as well as specimens collected from Singapore (Malacca strait) and Indonesia (Banda Sea). Gonadosomatic indices (GSI) revealed that M. cordyla does not spawn near Taiwan. Data related to the mitochondrial control region revealed that the samples from Singapore and Indonesia represented two distinct genetic cohorts. Genotyping revealed that during the summer (June–August 2000), the Indonesian variant was dominant in eastern Taiwan (presumably following the Kuroshio Current) and in the Penghu region (following the Kuroshio Branch Current). During the same period, the Singapore genotype was dominant along the western coast of Taiwan (presumably following the South China Sea Current); however, the number dropped during the winter (December–February 2001) under the effects of the China Coast Current. Divergence time estimates indicate that the two genetic cohorts split during the last glacial maximum. Despite the fact that these results are based on sampling from a single year, they demonstrate the importance of seasonal sampling in unravelling the genetic diversity in pelagic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document