scholarly journals Holotomography: refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging

2017 ◽  
Author(s):  
Doyeon Kim ◽  
SangYun Lee ◽  
Moosung Lee ◽  
JunTaek Oh ◽  
Su-A Yang ◽  
...  

AbstractLive cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.

2006 ◽  
Vol 174 (4) ◽  
pp. 481-484 ◽  
Author(s):  
Yu-li Wang ◽  
Klaus M. Hahn ◽  
Robert F. Murphy ◽  
Alan F. Horwitz

A recent meeting entitled Frontiers in Live Cell Imaging was attended by more than 400 cell biologists, physicists, chemists, mathematicians, and engineers. Unlike typical special topics meetings, which bring together investigators in a defined field primarily to review recent progress, the purpose of this meeting was to promote cross-disciplinary interactions by introducing emerging methods on the one hand and important biological applications on the other. The goal was to turn live cell imaging from a “technique” used in cell biology into a new exploratory science that combines a number of research fields.


2012 ◽  
Vol 102 (2) ◽  
pp. 360-368 ◽  
Author(s):  
Katharina Klein ◽  
Alexander M. Gigler ◽  
Thomas Aschenbrenner ◽  
Roberto Monetti ◽  
Wolfram Bunk ◽  
...  

2018 ◽  
Vol 9 (10) ◽  
pp. 2690-2697 ◽  
Author(s):  
Jin-Sung Park ◽  
Il-Buem Lee ◽  
Hyeon-Min Moon ◽  
Jong-Hyeon Joo ◽  
Kyoung-Hoon Kim ◽  
...  

Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label.


Open Biology ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 160156 ◽  
Author(s):  
Tong Chen ◽  
Blanca Gomez-Escoda ◽  
Javier Munoz-Garcia ◽  
Julien Babic ◽  
Laurent Griscom ◽  
...  

Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging.


Author(s):  
Darren Machin ◽  
Daniel Williamson ◽  
Peter Fisher ◽  
victoria miller ◽  
Gemma Wildsmith ◽  
...  

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase-labelling approach to generate site-specifically <i>N</i>-terminally modified variants of both the A2-B<sub>5</sub> heterohexamer and B<sub>5</sub> pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B<sub>5</sub> pentamer showed an unexpected localization in the <i>medial/trans</i> Golgi. This study suggests a future role for specifically-labelled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labelling of lipid-rafts in fixed cells.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5779
Author(s):  
Daigo Terutsuki ◽  
Hidefumi Mitsuno ◽  
Ryohei Kanzaki

The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.


Sign in / Sign up

Export Citation Format

Share Document