scholarly journals 3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5779
Author(s):  
Daigo Terutsuki ◽  
Hidefumi Mitsuno ◽  
Ryohei Kanzaki

The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2125 ◽  
Author(s):  
Ina G. Siller ◽  
Anton Enders ◽  
Tobias Steinwedel ◽  
Niklas-Maximilian Epping ◽  
Marline Kirsch ◽  
...  

With growing advances in three-dimensional (3D) printing technology, the availability and diversity of printing materials has rapidly increased over the last years. 3D printing has quickly become a useful tool for biomedical and various laboratory applications, offering a tremendous potential for efficiently fabricating complex devices in a short period of time. However, there still remains a lack of information regarding the impact of printing materials and post-processing techniques on cell behavior. This study introduces real-time live-cell imaging technology as a fast, user-friendly, and high-throughput screening strategy to verify the in vitro biocompatibility of 3D printed materials. Polyacrylate-based photopolymer material was printed using high-resolution 3D printing techniques, post-processed using three different procedures, and then analyzed with respect to its effects on cell viability, apoptosis, and necrosis of adipogenic mesenchymal stem cells (MSCs). When using ethanol for the post-processing procedure and disinfection, no significant effects on MSCs could be detected. For the analyses a novel image-based live-cell analysis system was compared against a biochemical-based standard plate reader assay and traditional flow cytometry. This comparison illustrates the superiority of using image-based detection of in vitro biocompatibility with respect to analysis time, usability, and scientific outcome.


Open Biology ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 160156 ◽  
Author(s):  
Tong Chen ◽  
Blanca Gomez-Escoda ◽  
Javier Munoz-Garcia ◽  
Julien Babic ◽  
Laurent Griscom ◽  
...  

Monitoring cellular responses to changes in growth conditions and perturbation of targeted pathways is integral to the investigation of biological processes. However, manipulating cells and their environment during live-cell-imaging experiments still represents a major challenge. While the coupling of microfluidics with microscopy has emerged as a powerful solution to this problem, this approach remains severely underexploited. Indeed, most microdevices rely on the polymer polydimethylsiloxane (PDMS), which strongly absorbs a variety of molecules commonly used in cell biology. This effect of the microsystems on the cellular environment hampers our capacity to accurately modulate the composition of the medium and the concentration of specific compounds within the microchips, with implications for the reliability of these experiments. To overcome this critical issue, we developed new PDMS-free microdevices dedicated to live-cell imaging that show no interference with small molecules. They also integrate a module for maintaining precise sample temperature both above and below ambient as well as for rapid temperature shifts. Importantly, changes in medium composition and temperature can be efficiently achieved within the chips while recording cell behaviour by microscopy. Compatible with different model systems, our platforms provide a versatile solution for the dynamic regulation of the cellular environment during live-cell imaging.


2006 ◽  
Vol 174 (4) ◽  
pp. 481-484 ◽  
Author(s):  
Yu-li Wang ◽  
Klaus M. Hahn ◽  
Robert F. Murphy ◽  
Alan F. Horwitz

A recent meeting entitled Frontiers in Live Cell Imaging was attended by more than 400 cell biologists, physicists, chemists, mathematicians, and engineers. Unlike typical special topics meetings, which bring together investigators in a defined field primarily to review recent progress, the purpose of this meeting was to promote cross-disciplinary interactions by introducing emerging methods on the one hand and important biological applications on the other. The goal was to turn live cell imaging from a “technique” used in cell biology into a new exploratory science that combines a number of research fields.


Author(s):  
Darren Machin ◽  
Daniel Williamson ◽  
Peter Fisher ◽  
victoria miller ◽  
Gemma Wildsmith ◽  
...  

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase-labelling approach to generate site-specifically <i>N</i>-terminally modified variants of both the A2-B<sub>5</sub> heterohexamer and B<sub>5</sub> pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B<sub>5</sub> pentamer showed an unexpected localization in the <i>medial/trans</i> Golgi. This study suggests a future role for specifically-labelled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labelling of lipid-rafts in fixed cells.


2017 ◽  
Author(s):  
Doyeon Kim ◽  
SangYun Lee ◽  
Moosung Lee ◽  
JunTaek Oh ◽  
Su-A Yang ◽  
...  

AbstractLive cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.


Author(s):  
Andre Arashiro Pulschen ◽  
Delyan R. Mutavchiev ◽  
Kim Nadine Sebastian ◽  
Jacques Roubinet ◽  
Marc Roubinet ◽  
...  

Live-cell imaging has revolutionized our understanding of dynamic cellular processes in bacteria and eukaryotes. While similar techniques have recently been applied to the study of halophilic archaea, our ability to explore the cell biology of thermophilic archaea is limited, due to the technical challenges of imaging at high temperatures. Here, we report the construction of the Sulfoscope, a heated chamber that enables live-cell imaging on an inverted fluorescent microscope. Using this system combined with thermostable fluorescent probes, we were able to image Sulfolobus cells as they divide, revealing a tight coupling between changes in DNA compaction, segregation and cytokinesis. By imaging deletion mutants, we observe important differences in the function of the two ESCRTIII proteins recently implicated in cytokinesis. The loss of CdvB1 compromises cell division, causing occasional division failures and fusion of the two daughter cells, whereas the deletion of cdvB2 leads to a profound loss of division symmetry, generating daughter cells that vary widely in size and eventually generating ghost cells. These data indicate that DNA separation and cytokinesis are coordinated in Sulfolobus, as is the case in eukaryotes, and that two contractile ESCRTIII polymers perform distinct roles to ensure that Sulfolobus cells undergo a robust and symmetrical division. Taken together, the Sulfoscope has shown to provide a controlled high temperature environment, in which cell biology of Sulfolobus can be studied in unprecedent details.


2017 ◽  
Vol 4 (8) ◽  
pp. 170811 ◽  
Author(s):  
Sayak Mukherjee ◽  
David Stewart ◽  
William Stewart ◽  
Lewis L. Lanier ◽  
Jayajit Das

Single-cell responses are shaped by the geometry of signalling kinetic trajectories carved in a multidimensional space spanned by signalling protein abundances. It is, however, challenging to assay a large number (more than 3) of signalling species in live-cell imaging, which makes it difficult to probe single-cell signalling kinetic trajectories in large dimensions. Flow and mass cytometry techniques can measure a large number (4 to more than 40) of signalling species but are unable to track single cells. Thus, cytometry experiments provide detailed time-stamped snapshots of single-cell signalling kinetics. Is it possible to use the time-stamped cytometry data to reconstruct single-cell signalling trajectories? Borrowing concepts of conserved and slow variables from non-equilibrium statistical physics we develop an approach to reconstruct signalling trajectories using snapshot data by creating new variables that remain invariant or vary slowly during the signalling kinetics. We apply this approach to reconstruct trajectories using snapshot data obtained from in silico simulations, live-cell imaging measurements, and, synthetic flow cytometry datasets. The application of invariants and slow variables to reconstruct trajectories provides a radically different way to track objects using snapshot data. The approach is likely to have implications for solving matching problems in a wide range of disciplines.


Sign in / Sign up

Export Citation Format

Share Document