scholarly journals Characteristics of human encounters and social mixing patterns relevant to infectious diseases spread by close contact: A survey in southwest Uganda

2017 ◽  
Author(s):  
O le Polain de Waroux ◽  
S Cohuet ◽  
D Ndazima ◽  
A J Kucharski ◽  
A Juan-Giner ◽  
...  

ABSTRACTQuantification of human interactions relevant to infectious disease transmission through social contact is central to predict disease dynamics, yet data from low-resource settings remain scarce. We undertook a social contact survey in rural Uganda, whereby participants were asked to recall details about the frequency, type, and socio-demographic characteristics of any conversational encounter that lasted for ≥5 minutes (henceforth defined as ‘contacts’) during the previous day. An estimate of the number of ‘casual contacts’ (i.e. <5 minutes) was also obtained. A total of 568 individuals were included. On average participants reported having routine contact with 7.2 individuals (range 1-25). Children aged 5-14 years had the highest frequency of contacts and the elderly (≥65 years) the fewest (P<0.001). A strong age-assortative pattern was seen, particularly outside the household and increasingly so for contacts occurring further away from home. Adults aged 25-64 years tended to travel more and further than others, and males travelled more frequently than females. Our study provides detailed information on contact patterns and their spatial characteristics in an African setting. It therefore fills an important knowledge gap that will help more accurately predict transmission dynamics and the impact of control strategies in such areas.

Author(s):  
Thang Van Hoang ◽  
Pietro Coletti ◽  
Yimer Wasihun Kiffe ◽  
Kim Van Kerckhove ◽  
Sarah Vercruysse ◽  
...  

AbstractBackgroundIn 2010-2011, we conducted a social contact survey in Flanders, Belgium, aimed at improving and extending the design of the first social contact survey conducted in Belgium in 2006. This second social contact survey aimed to enable, for the first time, the estimation of social mixing patterns for an age range of 0 to 99 years and the investigation of whether contact rates remain stable over this 5-year time period.MethodsDifferent data mining techniques are used to explore the data, and the age-specific number of social contacts and the age-specific contact rates are modelled using a GAMLSS model. We compare different matrices using assortativeness measures. The relative change in the basic reproduction number (R0) and the ratio of relative incidences with 95% bootstrap confidence intervals (BCI) are employed to investigate and quantify the impact on epidemic spread due to differences in gender, day of the week, holiday vs. regular periods and changes in mixing patterns over the 5-year time gap between the 2006 and 2010-2011 surveys. Finally, we compare the fit of the contact matrices in 2006 and 2010-2011 to Varicella serological data.ResultsAll estimated contact patterns featured strong homophily in age and gender, especially for small children and adolescents. A 30% (95% BCI [17%; 37%] ) and 29% (95% BCI [14%; 40%] ) reduction in R0 was observed for weekend versus weekdays and for holiday versus regular periods, respectively. Significantly more interactions between people aged 60+ years and their grandchildren were observed on holiday and weekend days than on regular weekdays. Comparing contact patterns using different methods did not show any substantial differences over the 5-year time period under study.ConclusionsThe second social contact survey in Flanders, Belgium, endorses the findings of its 2006 predecessor and adds important information on the social mixing patterns of people older than 60 years of age. Based on this analysis, the mixing patterns of people older than 60 years exhibit considerable heterogeneity, and overall, the comparison of the two surveys shows that social contact rates can be assumed stable in Flanders over a time span of 5 years.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Thang Van Hoang ◽  
Pietro Coletti ◽  
Yimer Wasihun Kifle ◽  
Kim Van Kerckhove ◽  
Sarah Vercruysse ◽  
...  

Abstract Background In 2010-2011, we conducted a social contact survey in Flanders, Belgium, aimed at improving and extending the design of the first social contact survey conducted in Belgium in 2006. This second social contact survey aimed to enable, for the first time, the estimation of social mixing patterns for an age range of 0 to 99 years and the investigation of whether contact rates remain stable over this 5-year time period. Methods Different data mining techniques are used to explore the data, and the age-specific number of social contacts and the age-specific contact rates are modelled using a generalized additive models for location, scale and shape (GAMLSS) model. We compare different matrices using assortativeness measures. The relative change in the basic reproduction number (R0) and the ratio of relative incidences with 95% bootstrap confidence intervals (BCI) are employed to investigate and quantify the impact on epidemic spread due to differences in sex, day of the week, holiday vs. regular periods and changes in mixing patterns over the 5-year time gap between the 2006 and 2010-2011 surveys. Finally, we compare the fit of the contact matrices in 2006 and 2010-2011 to Varicella serological data. Results All estimated contact patterns featured strong homophily in age and sex, especially for small children and adolescents. A 30% (95% BCI [17%; 37%]) and 29% (95% BCI [14%; 40%]) reduction in R0 was observed for weekend versus weekdays and for holiday versus regular periods, respectively. Significantly more interactions between people aged 60+ years and their grandchildren were observed on holiday and weekend days than on regular weekdays. Comparing contact patterns using different methods did not show any substantial differences over the 5-year time period under study. Conclusions The second social contact survey in Flanders, Belgium, endorses the findings of its 2006 predecessor and adds important information on the social mixing patterns of people older than 60 years of age. Based on this analysis, the mixing patterns of people older than 60 years exhibit considerable heterogeneity, and overall, the comparison of the two surveys shows that social contact rates can be assumed stable in Flanders over a time span of 5 years.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3958 ◽  
Author(s):  
Thiripura Vino ◽  
Gurmeet R. Singh ◽  
Belinda Davison ◽  
Patricia T. Campbell ◽  
Michael J. Lydeamore ◽  
...  

Households are an important location for the transmission of communicable diseases. Social contact between household members is typically more frequent, of greater intensity, and is more likely to involve people of different age groups than contact occurring in the general community. Understanding household structure in different populations is therefore fundamental to explaining patterns of disease transmission in these populations. Indigenous populations in Australia tend to live in larger households than non-Indigenous populations, but limited data are available on the structure of these households, and how they differ between remote and urban communities. We have developed a novel approach to the collection of household structure data, suitable for use in a variety of contexts, which provides a detailed view of age, gender, and room occupancy patterns in remote and urban Australian Indigenous households. Here we report analysis of data collected using this tool, which quantifies the extent of crowding in Indigenous households, particularly in remote areas. We use these data to generate matrices of age-specific contact rates, as used by mathematical models of infectious disease transmission. To demonstrate the impact of household structure, we use a mathematical model to simulate an influenza-like illness in different populations. Our simulations suggest that outbreaks in remote populations are likely to spread more rapidly and to a greater extent than outbreaks in non-Indigenous populations.


2017 ◽  
Author(s):  
Thiripura Vino ◽  
Gurmeet R Singh ◽  
Belinda Davison ◽  
Patricia T Campbell ◽  
Michael Lydeamore ◽  
...  

Households are an important location for the transmission of communicable diseases. Social contact between household members is typically more frequent, of greater intensity, and is more likely to involve people of different age groups than contact occurring in the general community. Understanding household structure in different populations is therefore fundamental to explaining patterns of disease transmission in these populations. Indigenous populations in Australia tend to live in larger households than non Indigenous populations, but limited data is available on the structure of these households, and how they differ between remote and urban communities. We have developed a novel approach to the collection of household structure data, suitable for use in a variety of contexts, which provides a detailed view of age,gender, and room occupancy patterns in remote and urban Australian Indigenous households. Here we report analysis of data collected using this tool, which quantifies the extent of crowding in Indigenous households, particularly in remote areas. We use this data to generate matrices of age-specific contact rates, as used by mathematical models of infectious disease transmission. To demonstrate the impact of household structure, we use a mathematical model to simulate an influenza-like illness in different populations. Our simulations suggest that outbreaks in remote populations are likely to spread more rapidly and to a greater extent than outbreaks in non-Indigenous populations.


2017 ◽  
Author(s):  
Thiripura Vino ◽  
Gurmeet R Singh ◽  
Belinda Davison ◽  
Patricia T Campbell ◽  
Michael Lydeamore ◽  
...  

Households are an important location for the transmission of communicable diseases. Social contact between household members is typically more frequent, of greater intensity, and is more likely to involve people of different age groups than contact occurring in the general community. Understanding household structure in different populations is therefore fundamental to explaining patterns of disease transmission in these populations. Indigenous populations in Australia tend to live in larger households than non Indigenous populations, but limited data is available on the structure of these households, and how they differ between remote and urban communities. We have developed a novel approach to the collection of household structure data, suitable for use in a variety of contexts, which provides a detailed view of age,gender, and room occupancy patterns in remote and urban Australian Indigenous households. Here we report analysis of data collected using this tool, which quantifies the extent of crowding in Indigenous households, particularly in remote areas. We use this data to generate matrices of age-specific contact rates, as used by mathematical models of infectious disease transmission. To demonstrate the impact of household structure, we use a mathematical model to simulate an influenza-like illness in different populations. Our simulations suggest that outbreaks in remote populations are likely to spread more rapidly and to a greater extent than outbreaks in non-Indigenous populations.


Author(s):  
Vana Sypsa ◽  
Sotirios Roussos ◽  
Dimitrios Paraskevis ◽  
Theodore Lytras ◽  
S Sotirios Tsiodras ◽  
...  

AbstractIn Greece, a nationwide lockdown to mitigate the transmission of SARS-CoV-2 was imposed on March 23, 2020. As by the end of April the first epidemic wave is waning, it is important to assess the infection attack rate and quantify the impact of physical distancing. We implemented a survey to assess social mixing patterns before the epidemic and during lockdown. We estimated R0 from surveillance data and assessed its decline as a result of physical distancing based on social contacts data. We applied a Susceptible-Exposed-Infectious-Recovered model to estimate the infection attack rate and the infection fatality ratio (IFR). As multiple social distancing measures were implemented simultaneously (schools/work/leisure), we assessed their overall impact as well as their relative contribution. R0 was estimated 2·38 (95%CI: 2·01,2·80). By April 26th, the infection attack rate was 0·12% (95%CrI: 0·06%,0·26%) and the IFR 1·12% (95%CrI: 0·55%,2·31%). During lockdown, daily contacts were reduced by 86·9% and the effective reproduction number reached 0·46 (95%CrI: 0·35,0·57). The reduction in R0 attributed to lockdown was 81·0% (95%CrI: 71·8%,86·0%) whereas the reduction attributed to each measure separately ranged between 10%-24%. We assessed scenarios with less disruptive social distancing measures as well as scenarios where measures are partially lifted after lockdown. This is the first impact assessment of the first wave of SARS-CoV-2 in a European country. It suggests that only multiple measures implemented simultaneously could reduce R0 below 1. Measuring social mixing patterns can be a tool for real-time monitoring of the epidemic potential.


Author(s):  
Emanuele Del Fava ◽  
Jorge Cimentada ◽  
Daniela Perrotta ◽  
André Grow ◽  
Francesco Rampazzo ◽  
...  

AbstractPhysical distancing measures are intended to mitigate the spread of COVID-19, even though their impact on social contacts and disease transmission remains unclear. Obtaining timely data on social contact patterns can help to assess the impact of such protective measures. We conducted an online opt-in survey based on targeted Facebook advertising campaigns across seven European countries (Belgium, France, Germany, Italy, Netherlands, Spain, United Kingdom (UK)) and the United States (US), achieving a sample of 53,708 questionnaires in the period March 13–April 13, 2020. Post-stratification weights were produced to correct for biases. Data on social contact numbers, as well as on protective behaviour and perceived level of threat were collected and used to the expected net reproduction number by week, Rt, with respect to pre-pandemic data. Compared to social contacts reported prior to COVID-19, in mid-April daily social contact numbers had decreased between 49% in Germany and 83% in Italy, ranging from below three contacts per day in France, Spain, and the UK up to four in Germany and the Netherlands. Such reductions were sufficient to bring Rt to one or even below in all countries, except Germany. Evidence from the US and the UK showed that the number of daily social contacts mainly decreased after governments issued the first physical distancing guidelines. Finally, although contact numbers decreased uniformly across age groups, older adults reported the lowest numbers of contacts, indicating higher levels of protection. We provided a comparable set of statistics on social contact patterns during the COVID-19 pandemic for eight high-income countries, disaggregated by week. As these estimates offer a more grounded alternative to the theoretical assumptions often used in epidemiological models, the scientific community could draw on this information for developing more realistic epidemic models of COVID-19.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Huo ◽  
Jing Chen ◽  
Shigui Ruan

Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6% (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693%,0.814%]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.


2020 ◽  
Vol 376 (1818) ◽  
pp. 20190817 ◽  
Author(s):  
Joel Hellewell ◽  
Ellie Sherrard-Smith ◽  
Sheila Ogoma ◽  
Thomas S. Churcher

Malaria control in sub-Saharan Africa relies on the widespread use of long-lasting insecticidal nets (LLINs) or the indoor residual spraying of insecticide. Disease transmission may be maintained even when these indoor interventions are universally used as some mosquitoes will bite in the early morning and evening when people are outside. As countries seek to eliminate malaria, they can target outdoor biting using new vector control tools such as spatial repellent emanators, which emit airborne insecticide to form a protective area around the user. Field data are used to incorporate a low-technology emanator into a mathematical model of malaria transmission to predict its public health impact across a range of scenarios. Targeting outdoor biting by repeatedly distributing emanators alongside LLINs increases the chance of elimination, but the additional benefit depends on the level of anthropophagy in the local mosquito population, emanator effectiveness and the pre-intervention proportion of mosquitoes biting outdoors. High proportions of pyrethroid-resistant mosquitoes diminish LLIN impact because of reduced mosquito mortality. When mosquitoes are highly anthropophagic, this reduced mortality leads to more outdoor biting and a reduced additional benefit of emanators, even if emanators are assumed to retain their effectiveness in the presence of pyrethroid resistance. Different target product profiles are examined, which show the extra epidemiological benefits of spatial repellents that induce mosquito mortality. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.


Sign in / Sign up

Export Citation Format

Share Document