scholarly journals Combinatorial regulation of the balance between dynein microtubule end accumulation and initiation of directed motility

2017 ◽  
Author(s):  
Rupam Jha ◽  
Johanna Roostalu ◽  
Martina Trokter ◽  
Thomas Surrey

ABSTRACTCytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein’s activity is controlled by the combinatorial action of several regulators. The molecular mechanism of this regulation is poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either passively tracking dynamic microtubule plus-ends in an EB-dependent manner or moving processively towards minus ends in an adaptor protein-dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal D2 (BicD2) or the multifunctional regulator Lisencephaly-1 (Lis1). Remarkably, dynactin, but not EBs, strongly biases motility initiation locally from microtubule plus ends by autonomous plus end recognition. BicD2 and Lis1 together control the overall efficiency of motility initiation. Our study provides insight into the mechanism of dynein activity regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.

2016 ◽  
Vol 214 (3) ◽  
pp. 309-318 ◽  
Author(s):  
Courtney M. Schroeder ◽  
Ronald D. Vale

Metazoan cytoplasmic dynein moves processively along microtubules with the aid of dynactin and an adaptor protein that joins dynein and dynactin into a stable ternary complex. Here, we examined how Hook3, a cargo adaptor involved in Golgi and endosome transport, forms a motile dynein–dynactin complex. We show that the conserved Hook domain interacts directly with the dynein light intermediate chain 1 (LIC1). By solving the crystal structure of the Hook domain and using structure-based mutagenesis, we identify two conserved surface residues that are each critical for LIC1 binding. Hook proteins with mutations in these residues fail to form a stable dynein–dynactin complex, revealing a crucial role for LIC1 in this interaction. We also identify a region of Hook3 specifically required for an allosteric activation of processive motility. Our work reveals the structural details of Hook3’s interaction with dynein and offers insight into how cargo adaptors form processive dynein–dynactin motor complexes.


2016 ◽  
Author(s):  
Courtney M. Schroeder ◽  
Ronald D. Vale

AbstractMetazoan cytoplasmic dynein moves processively along microtubules with the aid of dynactin and an adaptor protein that joins dynein and dynactin into a stable ternary complex. Here, we have examined how Hook3, a cargo adaptor involved in Golgi and endosome transport, forms a motile dynein-dynactin complex. We show that the conserved Hook domain interacts directly with the dynein light intermediate chain 1 (LIC1). By solving the crystal structure of the Hook domain and using structure-based mutagenesis, we identify two conserved surface residues that are each critical for LIC1 binding. Hook proteins with mutations in these residues fail to form a stable dynein-dynactin complex, revealing a crucial role for LIC1 in this interaction. We also identify a region of Hook3 specifically required for an allosteric activation of processive motility. Our work reveals the structural details of Hook3’s interaction with dynein and offers insight into how cargo adaptors form processive dynein-dynactin motor complexes.


2005 ◽  
Vol 16 (7) ◽  
pp. 3107-3116 ◽  
Author(s):  
Anindya Ghosh-Roy ◽  
Bela S. Desai ◽  
Krishanu Ray

Toward the end of spermiogenesis, spermatid nuclei are compacted and the clonally related spermatids individualize to become mature and active sperm. Studies in Drosophila showed that caudal end-directed movement of a microfilament-rich structure, called investment cone, expels the cytoplasmic contents of individual spermatids. F-actin dynamics plays an important role in this process. Here we report that the dynein light chain 1 (DLC1) of Drosophila is involved in two separate cellular processes during sperm individualization. It is enriched around spermatid nuclei during postelongation stages and plays an important role in the dynein-dynactin–dependent rostral retention of the nuclei during this period. In addition, DDLC1 colocalizes with dynamin along investment cones and regulates F-actin assembly at this organelle by retaining dynamin along the cones. Interestingly, we found that this process does not require the other subunits of cytoplasmic dynein-dynactin complex. Altogether, these observations suggest that DLC1 could independently regulate multiple cellular functions and established a novel role of this protein in F-actin assembly in Drosophila.


2013 ◽  
Vol 201 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jonne A. Raaijmakers ◽  
Marvin E. Tanenbaum ◽  
René H. Medema

Cytoplasmic dynein is a large minus end–directed motor complex with multiple functions during cell division. The dynein complex interacts with various adaptor proteins, including the dynactin complex, thought to be critical for most dynein functions. Specific activities have been linked to several subunits and adaptors, but the function of the majority of components has remained elusive. Here, we systematically address the function of each dynein–dynactin subunit and adaptor protein in mitosis. We identify the essential components that are required for all mitotic functions of dynein. Moreover, we find specific dynein recruitment factors, and adaptors, like Nde1/L1, required for activation, but largely dispensable for dynein localization. Most surprisingly, our data show that dynactin is not required for dynein-dependent spindle organization, but acts as a dynein recruitment factor. These results provide a comprehensive overview of the role of dynein subunits and adaptors in mitosis and reveal that dynein forms distinct complexes requiring specific recruiters and activators to promote orderly progression through mitosis.


2020 ◽  
Author(s):  
Pei-Yu Chu ◽  
Yu-Ling Tai ◽  
Ming-Yang Wang ◽  
Hsinyu Lee ◽  
Wen Hung Kuo ◽  
...  

AbstractGrowth factor receptor bound protein-7 (Grb7) is a multi-domain signaling adaptor protein that regulates various cellular functions acting as an adaptor protein in relaying signal transduction. Although several studies indicated that Grb7 amplifies EGFR-mediated signaling in cancers, the detailed regulatory mechanism of whether and how Grb7 is involved in EGFR-mediated lung cancer progression remains unclear. Here, we demonstrate that EGF-regulated Grb7 phosphorylation promotes lung cancer progression through phosphorylation of STAT3. Intrinsically, EGF/EGFR signal is required for the formation of Grb7/STAT3 complex as well as its nuclear accumulation. Once in the nucleus, STAT3 interacts with EPHA4 promoter, which in turn affects the gene expression level of EPHA4 through transcriptional regulation. Functionally, EphA4 together with EGFR promotes cancer migration, proliferation, and anchorage-independent growth. Our study reveals a novel mechanism in which Grb7 contribute to lung cancer malignancies through its interaction with STAT3 that leads to sequential regulation of EPHA4 gene expression in an EGF/EGFR signal-dependent manner.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Anthony J Roberts ◽  
Brian S Goodman ◽  
Samara L Reck-Peterson

Cytoplasmic dynein powers intracellular movement of cargo toward the microtubule minus end. The first step in a variety of dynein transport events is the targeting of dynein to the dynamic microtubule plus end, but the molecular mechanism underlying this spatial regulation is not understood. Here, we reconstitute dynein plus-end transport using purified proteins from S. cerevisiae and dissect the mechanism using single-molecule microscopy. We find that two proteins–homologs of Lis1 and Clip170–are sufficient to couple dynein to Kip2, a plus-end-directed kinesin. Dynein is transported to the plus end by Kip2, but is not a passive passenger, resisting its own plus-end-directed motion. Two microtubule-associated proteins, homologs of Clip170 and EB1, act as processivity factors for Kip2, helping it overcome dynein's intrinsic minus-end-directed motility. This reveals how a minimal system of proteins transports a molecular motor to the start of its track.


2012 ◽  
Vol 23 (21) ◽  
pp. 4226-4241 ◽  
Author(s):  
Daniël Splinter ◽  
David S. Razafsky ◽  
Max A. Schlager ◽  
Andrea Serra-Marques ◽  
Ilya Grigoriev ◽  
...  

Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.


Author(s):  
Andrew M. Yuengert

Although most economists are skeptical of or puzzled by the Catholic concept of the common good, a rejection of the economic approach as inimical to the common good would be hasty and counterproductive. Economic analysis can enrich the common good tradition in four ways. First, economics embodies a deep respect for economic agency and for the effects of policy and institutions on individual agents. Second, economics offers a rich literature on the nature of unplanned order and how it might be shaped by policy. Third, economics offers insight into the public and private provision of various kinds of goods (private, public, common pool resources). Fourth, recent work on the development and logic of institutions and norms emphasizes sustainability rooted in the good of the individual.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2021 ◽  
Vol 9 (5) ◽  
pp. 1087
Author(s):  
Loreley Castelli ◽  
María Laura Genchi García ◽  
Anne Dalmon ◽  
Daniela Arredondo ◽  
Karina Antúnez ◽  
...  

RNA viruses play a significant role in the current high losses of pollinators. Although many studies have focused on the epidemiology of western honey bee (Apis mellifera) viruses at the colony level, the dynamics of virus infection within colonies remains poorly explored. In this study, the two main variants of the ubiquitous honey bee virus DWV as well as three major honey bee viruses (SBV, ABPV and BQCV) were analyzed from Varroa-destructor-parasitized pupae. More precisely, RT-qPCR was used to quantify and compare virus genome copies across honey bee pupae at the individual and subfamily levels (i.e., patrilines, sharing the same mother queen but with different drones as fathers). Additionally, virus genome copies were compared in cells parasitized by reproducing and non-reproducing mite foundresses to assess the role of this vector. Only DWV was detected in the samples, and the two variants of this virus significantly differed when comparing the sampling period, colonies and patrilines. Moreover, DWV-A and DWV-B exhibited different infection patterns, reflecting contrasting dynamics. Altogether, these results provide new insight into honey bee diseases and stress the need for more studies about the mechanisms of intra-colonial disease variation in social insects.


Sign in / Sign up

Export Citation Format

Share Document