scholarly journals Shared Genetic Architecture between Asthma and Allergic Diseases: A Genome-Wide Cross Trait Analysis of 112,000 Individuals from UK Biobank

2017 ◽  
Author(s):  
Zhaozhong Zhu ◽  
Phil H. Lee ◽  
Mark D. Chaffin ◽  
Wonil Chung ◽  
Po-Ru Loh ◽  
...  

AbstractClinical and epidemiological data suggest that asthma and allergic diseases are associated. And may share a common genetic etiology. We analyzed genome-wide single-nucleotide polymorphism (SNP) data for asthma and allergic diseases in 35,783 cases and 76,768 controls of European ancestry from the UK Biobank. Two publicly available independent genome wide association studies (GWAS) were used for replication. We have found a strong genome-wide genetic correlation between asthma and allergic diseases (rg = 0.75, P = 6.84×10−62). Cross trait analysis identified 38 genome-wide significant loci, including novel loci such as D2HGDH and GAL2ST2. Computational analysis showed that shared genetic loci are enriched in immune/inflammatory systems and tissues with epithelium cells. Our work identifies common genetic architectures shared between asthma and allergy and will help to advance our understanding of the molecular mechanisms underlying co-morbid asthma and allergic diseases.

2018 ◽  
Vol 50 (12) ◽  
pp. 1753-1753 ◽  
Author(s):  
Zhaozhong Zhu ◽  
Phil H. Lee ◽  
Mark D. Chaffin ◽  
Wonil Chung ◽  
Po-Ru Loh ◽  
...  

2018 ◽  
Vol 50 (6) ◽  
pp. 857-864 ◽  
Author(s):  
Zhaozhong Zhu ◽  
Phil H. Lee ◽  
Mark D. Chaffin ◽  
Wonil Chung ◽  
Po-Ru Loh ◽  
...  

2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


2021 ◽  
pp. ASN.2020111599
Author(s):  
Zhi Yu ◽  
Jin Jin ◽  
Adrienne Tin ◽  
Anna Köttgen ◽  
Bing Yu ◽  
...  

Background: Genome-wide association studies (GWAS) have revealed numerous loci for kidney function (estimated glomerular filtration rate, eGFR). The relationship of polygenic predictors of eGFR, risk of incident adverse kidney outcomes, and the plasma proteome is not known. Methods: We developed a genome-wide polygenic risk score (PRS) for eGFR by applying the LDpred algorithm to summary statistics generated from a multiethnic meta-analysis of CKDGen Consortium GWAS (N=765,348) and UK Biobank GWAS (90% of the cohort; N=451,508), followed by best parameter selection using the remaining 10% of UK Biobank (N=45,158). We then tested the association of the PRS in the Atherosclerosis Risk in Communities (ARIC) study (N=8,866) with incident chronic kidney disease, kidney failure, and acute kidney injury. We also examined associations between the PRS and 4,877 plasma proteins measured at at middle age and older adulthood and evaluated mediation of PRS associations by eGFR. Results: The developed PRS showed significant associations with all outcomes with hazard ratios (95% CI) per 1 SD lower PRS ranged from 1.06 (1.01, 1.11) to 1.33 (1.28, 1.37). The PRS was significantly associated with 132 proteins at both time points. The strongest associations were with cystatin-C, collagen alpha-1(XV) chain, and desmocollin-2. Most proteins were higher at lower kidney function, except for 5 proteins including testican-2. Most correlations of the genetic PRS with proteins were mediated by eGFR. Conclusions: A PRS for eGFR is now sufficiently strong to capture risk for a spectrum of incident kidney diseases and broadly influences the plasma proteome, primarily mediated by eGFR.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanyu Liang ◽  
Milton Pividori ◽  
Ani Manichaikul ◽  
Abraham A. Palmer ◽  
Nancy J. Cox ◽  
...  

Abstract Background Polygenic risk scores (PRS) are valuable to translate the results of genome-wide association studies (GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-ancestry leading to poor performance in populations of non-European ancestry. Results We introduce the polygenic transcriptome risk score (PTRS), which is based on predicted transcript levels (rather than SNPs), and explore the portability of PTRS across populations using UK Biobank data. Conclusions We show that PTRS has a significantly higher portability (Wilcoxon p=0.013) in the African-descent samples where the loss of performance is most acute with better performance than PRS when used in combination.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yasuyuki Nakamura ◽  
Akira Narita ◽  
Yoichi Sutoh ◽  
Nahomi Imaeda ◽  
Chiho Goto ◽  
...  

Abstract Recent genome-wide association studies (GWAS) on the dietary habits of the Japanese population have shown that an effect rs671 allele was inversely associated with fish consumption, whereas it was directly associated with coffee consumption. Although meat is a major source of protein and fat in the diet, whether genetic factors that influence meat-eating habits in healthy populations are unknown. This study aimed to conduct a GWAS to find genetic variations that affect meat consumption in a Japanese population. We analysed GWAS data using 14 076 participants from the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. We used a semi-quantitative food frequency questionnaire to estimate food intake that was validated previously. Association of the imputed variants with total meat consumption per 1000 kcal energy was performed by linear regression analysis with adjustments for age, sex, and principal component analysis components 1–10. We found that no genetic variant, including rs671, was associated with meat consumption. The previously reported single nucleotide polymorphisms that were associated with meat consumption in samples of European ancestry could not be replicated in our J-MICC data. In conclusion, significant genetic factors that affect meat consumption were not observed in a Japanese population.


2021 ◽  
pp. 2100199
Author(s):  
Zhaozhong Zhu ◽  
Jiachen Li ◽  
Jiahui Si ◽  
Baoshan Ma ◽  
Huwenbo Shi ◽  
...  

Lung function is a heritable complex phenotype with obesity being one of its important risk factors. However, the knowledge of their shared genetic basis is limited. Most genome-wide association studies (GWASs) for lung function have been based on European populations, limiting the generalisability across populations. Large-scale lung function GWAS in other populations are lacking.We included 100 285 subjects from China Kadoorie Biobank (CKB). To identify novel loci for lung function, single-trait GWAS were performed on FEV1, FVC, FEV1/FVC in CKB. We then performed genome-wide cross-trait analysis between the lung function and obesity traits (body mass index [BMI], BMI-adjusted waist-to-hip ratio, and BMI-adjusted waist circumference) to investigate the shared genetic effects in CKB. Finally, polygenic risk scores (PRSs) of lung function were developed in CKB and its interaction with BMI's association on lung function were examined. We also conducted cross-trait analysis in parallel with CKB using 457 756 subjects from UK Biobank (UKB) for replication and investigation of ancestry specific effect.We identified 9 genome-wide significant novel loci for FEV1, 6 for FVC and 3 for FEV1/FVC in CKB. FEV1 and FVC showed significant negative genetic correlation with obesity traits in both CKB and UKB. Genetic loci shared between lung function and obesity traits highlighted important pathways, including cell proliferation, embryo and tissue development. Mendelian randomisation analysis suggested significant negative causal effect of BMI on FEV1 and on FVC in both CKB and UKB. Lung function PRSs significantly modified the effect of change-in-BMI on change-in-lung function during an average follow-up of 8 years.This large-scale GWAS of lung function identified novel loci and shared genetic etiology between lung function and obesity. Change-in-BMI might affect change-in-lung function differently according to a subject's polygenic background. These findings may open new avenue for the development of molecular-targeted therapies for obesity and lung function improvement.


Rheumatology ◽  
2020 ◽  
Author(s):  
Jiayao Fan ◽  
Jiahao Zhu ◽  
Lingling Sun ◽  
Yasong Li ◽  
Tianle Wang ◽  
...  

Abstract Objective This two-sample Mendelian randomization study aimed to delve into the effects of genetically predicted adipokine levels on OA. Methods Summary statistic data for OA originated from a meta-analysis of a genome-wide association study with an overall 50 508 subjects of European ancestry. Publicly available summary data from four genome-wide association studies were exploited to respectively identify instrumental variables of adiponectin, leptin, resistin, chemerin and retinol-blinding protein 4. Subsequently, Mendelian randomization analyses were conducted with inverse variance weighted (IVW), weighted median and Mendelian randomization-Egger regression. Furthermore, sensitivity analyses were then conducted to assess the robustness of our results. Results The positive causality between genetically predicted leptin level and risk of total OA was indicated by IVW [odds ratio (OR): 2.40, 95% CI: 1.13–5.09] and weighted median (OR: 2.94, 95% CI: 1.23–6.99). In subgroup analyses, evidence of potential harmful effects of higher level of adiponectin (OR: 1.28, 95% CI: 1.01–1.61 using IVW), leptin (OR: 3.44, 95% CI: 1.18–10.03 using IVW) and resistin (OR: 1.18, 95% CI: 1.03–1.36 using IVW) on risk of knee OA were acquired. However, the mentioned effects on risk of hip OA were not statistically significant. Slight evidence was identified supporting causality of chemerin and retinol-blinding protein 4 for OA. The findings of this study were verified by the results from sensitivity analysis. Conclusions An association between genetically predicted leptin level and risk of total OA was identified. Furthermore, association of genetically predicted levels of adiponectin, leptin and resistin with risk of knee OA were reported.


2021 ◽  
Author(s):  
Ying Xiong ◽  
Susanna Kullberg ◽  
Lori Garman ◽  
Nathan Pezant ◽  
David Ellinghaus ◽  
...  

Abstract Background: Sex differences in the susceptibility of sarcoidosis are unknown. The study aims to identify sex-dependent genetic variations in two sarcoidosis clinical phenotypes: Löfgren's syndrome (LS) and non- Löfgren's syndrome (non-LS).Methods: A meta-analysis of genome-wide association studies was conducted in Europeans and African Americans, totaling 10,103 individuals from three population-based cohorts, Sweden (n = 3,843), Germany (n = 3,342), and the United States (n = 2,918), followed by replication look-up in the UK Biobank (n = 387,945). A genome-wide association study based on Immunochip data consisting of 141,000 single nucleotide polymorphisms (SNPs) was conducted in males and females in each cohort, respectively. The association test was based on logistic regression using the additive model in LS and non-LS independently. Additionally, gene-based analysis, expression quantitative trait loci (eQTL) assessments, and enrichment analysis were performed to discover functionally relevant mechanisms related to biological sex. Results: In LS sarcoidosis, we identified various sex-dependent genetic variations (798 SNPs in males and 703 SNPs in females). Genetic findings in sex groups were explicitly located in the extended major histocompatibility complex. In non-LS, we detected 16 SNPs in males and 38 in females, primarily localized to the MHC class II region. Additionally, the ANXA11 gene, a well-documented locus in sarcoidosis, was associated exclusively with non-LS males. Gene-based, eQTL assessment and enrichment analyses revealed distinct sex-dependent genomic loci and gene expression variation in the sex groups. Conclusions: Our findings provide new evidence of the existence of sex-dependent genetic variations underlying sarcoidosis genetic architecture. These findings suggest a sex bias in molecular mechanisms of sarcoidosis.


2020 ◽  
Author(s):  
Elena Bernabeu ◽  
Oriol Canela-Xandri ◽  
Konrad Rawlik ◽  
Andrea Talenti ◽  
James Prendergast ◽  
...  

ABSTRACTSex is arguably the most important differentiating characteristic in most mammalian species, separating populations into different groups, with varying behaviors, morphologies, and physiologies based on their complement of sex chromosomes. In humans, despite males and females sharing nearly identical genomes, there are differences between the sexes in complex traits and in the risk of a wide array of diseases. Gene by sex interactions (GxS) are thought to account for some of this sexual dimorphism. However, the extent and basis of these interactions are poorly understood.Here we provide insights into both the scope and mechanism of GxS across the genome of circa 450,000 individuals of European ancestry and 530 complex traits in the UK Biobank. We found small yet widespread differences in genetic architecture across traits through the calculation of sex-specific heritability, genetic correlations, and sex-stratified genome-wide association studies (GWAS). We also found that, in some cases, sex-agnostic GWAS efforts might be missing loci of interest, and looked into possible improvements in the prediction of high-level phenotypes. Finally, we studied the potential functional role of the dimorphism observed through sex-biased eQTL and gene-level analyses.This study marks a broad examination of the genetics of sexual dimorphism. Our findings parallel previous reports, suggesting the presence of sexual genetic heterogeneity across complex traits of generally modest magnitude. Our results suggest the need to consider sex-stratified analyses for future studies in order to shed light into possible sex-specific molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document