scholarly journals Genome-wide characterization of differential transcript usage in Arabidopsis thaliana

2017 ◽  
Author(s):  
Dries Vaneechoutte ◽  
April R. Estrada ◽  
Ying-Chen Lin ◽  
Ann E. Loraine ◽  
Klaas Vandepoele

SUMMARYAlternative splicing and the usage of alternate transcription start- or stop sites allows a single gene to produce multiple transcript isoforms. Most plant genes express certain isoforms at a significantly higher level than others, but under specific conditions this expression dominance can change, resulting in a different set of dominant isoforms. These events of Differential Transcript Usage (DTU) have been observed for thousands of Arabidopsis thaliana, Zea mays and Vitis vinifera genes and have been linked to development and stress response. However, the characteristics of these genes, nor the implications of DTU on their protein coding sequences or functions, are currently well understood. Here we present a dataset of isoform dominance and DTU for all genes in the AtRTD2 reference transcriptome based on a protocol that was benchmarked on simulated data and validated through comparison with a published RT-PCR panel. We report DTU events for 8,148 genes across 206 public RNA-Seq samples and find that protein sequences are affected in 22% of the cases. The observed DTU events show high consistency across replicates and reveal reproducible patterns in response to treatment and development. We also demonstrate that genes with different evolutionary ages, expression breadths, and functions show large differences in the frequency at which they undergo DTU and in the effect that these events have on their protein sequences. Finally, we showcase how the generated dataset can be used to explore DTU events for genes of interest or to find genes with specific DTU in samples of interest.SIGNIFICANCE STATEMENTDifferential transcript usage through alternative splicing has been reported for thousands of genes in plants, yet genome-wide datasets to study the implications for gene functions are thus far not available. Here we present the first reference dataset of isoform dominance and differential transcript usage for Arabidopsis thaliana based on 206 public RNA-Seq samples and provide insights in the occurrence and functional consequences of alternative splicing.


2016 ◽  
Author(s):  
Runxuan Zhang ◽  
Cristiane P. G. Calixto ◽  
Yamile Marquez ◽  
Peter Venhuizen ◽  
Nikoleta A. Tzioutziou ◽  
...  

AbstractBackgroundAlternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information.ResultsWe have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome-wide modifications of AtRTD2 to improve transcript quantification and alternative splicing analysis. As a result, we release AtRTD2-QUASI specifically for use in Quantification of Alternatively Spliced Isoforms and demonstrate that it out-performs other available transcriptomes for RNA-seq analysis.ConclusionsWe have generated a new transcriptome resource for RNA-seq analyses in Arabidopsis (AtRTD2) designed to address quantification of different isoforms and alternative splicing in gene expression studies. Experimental validation of alternative splicing changes identified inaccuracies in transcript quantification due to UTR length variation. To solve this problem, we also release a modified reference transcriptome, AtRTD2-QUASI for quantification of transcript isoforms, which shows high correlation with experimental data.



2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.



2019 ◽  
Vol 35 (21) ◽  
pp. 4469-4471 ◽  
Author(s):  
Kristoffer Vitting-Seerup ◽  
Albin Sandelin

Abstract Summary Alternative splicing is an important mechanism involved in health and disease. Recent work highlights the importance of investigating genome-wide changes in splicing patterns and the subsequent functional consequences. Current computational methods only support such analysis on a gene-by-gene basis. Therefore, we extended IsoformSwitchAnalyzeR R library to enable analysis of genome-wide changes in specific types of alternative splicing and predicted functional consequences of the resulting isoform switches. As a case study, we analyzed RNA-seq data from The Cancer Genome Atlas and found systematic changes in alternative splicing and the consequences of the associated isoform switches. Availability and implementation Windows, Linux and Mac OS: http://bioconductor.org/packages/IsoformSwitchAnalyzeR. Supplementary information Supplementary data are available at Bioinformatics online.



2020 ◽  
Vol 21 (10) ◽  
pp. 3711
Author(s):  
Melina J. Sedano ◽  
Alana L. Harrison ◽  
Mina Zilaie ◽  
Chandrima Das ◽  
Ramesh Choudhari ◽  
...  

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.



2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruimin Gao ◽  
Peng Liu ◽  
Yuhan Yong ◽  
Sek-Man Wong

Abstract Turnip crinkle virus (TCV) is a carmovirus that infects many Arabidopsis ecotypes. Most studies mainly focused on discovery of resistance genes against TCV infection and there is no Next Generation Sequencing based comparative genome wide transcriptome analysis reported. In this study, RNA-seq based transcriptome analysis revealed that 238 (155 up-regulated and 83 down-regulated) significant differentially expressed genes with at least 15-fold change were determined. Fifteen genes (including upregulated, unchanged and downregulated) were selected for RNA-seq data validation using quantitative real-time PCR, which showed consistencies between these two sets of data. GO enrichment analysis showed that numerous terms such as stress, immunity, defence and chemical stimulus were affected in TCV-infected plants. One putative plant defence related gene named WRKY61 was selected for further investigation. It showed that WRKY61 overexpression plants displayed reduced symptoms and less virus accumulation, as compared to wild type (WT) and WRKY61 deficient lines, suggesting that higher WRKY61 expression level reduced TCV viral accumulation. In conclusion, our transcriptome analysis showed that global gene expression was detected in TCV-infected Arabidopsis thaliana. WRKY61 gene was shown to be negatively correlated with TCV infection and viral symptoms, which may be connected to plant immunity pathways.



2017 ◽  
Author(s):  
Seth Polydore ◽  
Michael J. Axtell

SummaryPlant small RNAs regulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. sRNAs fall into two major categories: those that are reliant on RNA Dependent RNA Polymerases (RDRs) for biogenesis and those that aren’t. Known RDR-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR-independent sRNAs are primarily microRNAs and other hairpin-derived sRNAs. In this study, we produced and analyzed small RNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. Only a small fraction of all sRNA loci were RDR1/RDR2/RDR6-independent; most of these were microRNA loci or associated with predicted hairpin precursors. We found 58 previously annotated microRNA loci that were reliant on RDR1, −2, or −6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent small RNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for small RNA biogenesis. These 38 small RNA-producing loci have novel biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggest that these 38 loci represent one or more new types of small RNAs in Arabidopsis thaliana.Significance StatementSmall RNAs regulate gene expression in plants and are produced through a variety of previously-described mechanisms. Here, we examine a set of previously undiscovered small RNA-producing loci that are produced by novel mechanisms.



2020 ◽  
Author(s):  
Gergely Csaba ◽  
Evi Berchtold ◽  
Armin Hadziahmetovic ◽  
Markus Gruber ◽  
Constantin Ammar ◽  
...  

ABSTRACTWhile absolute quantification is challenging in high-throughput measurements, changes of features between conditions can often be determined with high precision. Therefore, analysis of fold changes is the standard method, but often, a doubly differential analysis of changes of changes is required. Differential alternative splicing is an example of a doubly differential analysis, i.e. fold changes between conditions for different isoforms of a gene. EmpiRe is a quantitative approach for various kinds of omics data based on fold changes for appropriate features of biological objects. Empirical error distributions for these fold changes are estimated from Replicate measurements and used to quantify feature fold changes and their directions. We assess the performance of EmpiRe to detect differentially expressed genes applied to RNA-Seq using simulated data. It achieved higher precision than established tools at nearly the same recall level. Furthermore, we assess the detection of alternatively Spliced genes via changes of isoform fold changes (EmpiReS) on distribution-free simulations and experimentally validated splicing events. EmpiReS achieves the best precision-recall values for simulations based on different biological datasets. We propose EmpiRe(S) as a general, quantitative and fast approach with high reliability and an excellent trade-off between sensitivity and precision in (doubly) differential analyses.



2018 ◽  
Author(s):  
Jin Li ◽  
Peng Yu

AbstractPsoriasis is a chronic inflammatory disease that affects the skin, nails, and joints. For understanding the mechanism of psoriasis, though, alternative splicing analysis has received relatively little attention in the field. Here, we developed and applied several computational analysis methods to study psoriasis. Using psoriasis mouse and human datasets, our differential alternative splicing analyses detected hundreds of differential alternative splicing changes. Our analysis of conservation revealed many exon-skipping events conserved between mice and humans. In addition, our splicing signature comparison analysis using the psoriasis datasets and our curated splicing factor perturbation RNA-Seq database, SFMetaDB, identified nine candidate splicing factors that may be important in regulating splicing in the psoriasis mouse model dataset. Three of the nine splicing factors were confirmed upon analyzing the human data. Our computational methods have generated predictions for the potential role of splicing in psoriasis. Future experiments on the novel candidates predicted by our computational analysis are expected to provide a better understanding of the molecular mechanism of psoriasis and to pave the way for new therapeutic treatments.



2019 ◽  
Author(s):  
Jian-Feng Liu ◽  
Wen Feng ◽  
Pengju Zhao ◽  
Xianrui Zheng

Abstract Background Alternative splicing (AS) is a process that mRNA precursor splices intron to form the mature mRNA. AS plays important roles in contributing to transcriptome and proteome divert. However, to date there is no research about pig AS in genome-wide level by RNA sequencing. Results To characterize the AS in pigs, herein we detected genome-wide transcripts and events by RNA sequencing technology (RNA-seq) 34 different tissues in Duroc pigs. In total, we identified 138, 403 AS events and 29, 270 expressed genes. We found alternative donor site was the most common AS form, which is accounted for 44% of the total AS events. The percentage of the other 3 AS forms are all around 19%. The results showed that the most common AS events (alternative donor site) can produce different transcripts or different proteins which affect the biological process. Among these AS events, 109, 483 were novel AS events, and the number of alternative donor splice site has increased the most (Accounting for 44% of the novel AS events).Conclusions The expression of gene with tissue specific AS events showed that the functions of these genes were consistent with the tissue function. AS increased proteome diversity and resulted in novel proteins that gained and lost important functional domains. In summary, these findings extend genome annotation and highlight roles that AS acts in tissue identity in pig.Key words: Alternative splicing; transcript; protein; SNP



Sign in / Sign up

Export Citation Format

Share Document