scholarly journals Parallel natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize

2017 ◽  
Author(s):  
Lang Yan ◽  
Sunil Kumar Kenchanmane Raju ◽  
Xianjun Lai ◽  
Yang Zhang ◽  
Xiuru Dai ◽  
...  

ABSTRACTArtificial selection has produced varieties of domesticated maize which thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and sub-tropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read isoseq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation on other cold adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes which were targets of artificial selection during the adaptation of maize to temperate climates and those which were targets of natural selection in temperate adapted T. dactyloides. This overlap between the targets of natural and artificial selection suggests genetic changes in crop-wild relatives associated with adaptation to new environments may be useful guides for identifying genetic targets for breeding efforts aimed at adapting crops to a changing climate.

2008 ◽  
Vol 4 (5) ◽  
pp. 568-572 ◽  
Author(s):  
Ralf Ohlemüller ◽  
Barbara J Anderson ◽  
Miguel B Araújo ◽  
Stuart H.M Butchart ◽  
Otakar Kudrna ◽  
...  

Why do areas with high numbers of small-range species occur where they do? We found that, for butterfly and plant species in Europe, and for bird species in the Western Hemisphere, such areas coincide with regions that have rare climates, and are higher and colder areas than surrounding regions. Species with small range sizes also tend to occur in climatically diverse regions, where species are likely to have been buffered from extinction in the past. We suggest that the centres of high small-range species richness we examined predominantly represent interglacial relict areas where cold-adapted species have been able to survive unusually warm periods in the last ca 10 000 years. We show that the rare climates that occur in current centres of species rarity will shrink disproportionately under future climate change, potentially leading to high vulnerability for many of the species they contain.


2021 ◽  
pp. 1-15
Author(s):  
Luis Sánchez

Abstract In Descent of Man, Charles Darwin noted the impact of political institutions on natural selection. He thought that institutions such as asylums or hospitals may deter natural selection; however, he did not reach a decisive answer. Questions remain as to whether the selective impacts of political institutions, which in Darwin’s terms may be referred to as “artificial selection,” are compatible with natural selection, and if so, to what extent. This essay argues that currently there appears to be an essential mismatch between nature and political institutions. Unfitted institutions put exogenous and disproportionate pressures on living beings. This creates consequences for what is postulated as the condition of basic equivalence, which allows species and individuals to enjoy similar chances of survival under natural circumstances. Thus, contrary to Darwin’s expectations, it is sustained that assumed natural selection is not discouraged but becomes exacerbated by political institutions. In such conditions, selection becomes primarily artificial and perhaps mainly political, with consequences for species’ evolutionary future.


2006 ◽  
Vol 35 ◽  
pp. 247-250
Author(s):  
H. Randle ◽  
E. Elworthy

The influence of Natural Selection on the evolution of the horse (Equus callabus) is minimal due to its close association with humans. Instead Artificial Selection is commonly imposed through selection for features such as a ‘breed standard’ or competitive ability. It has long been considered to be useful if indicators of characteristics such as physical ability could be identified. Kidd (1902) suggested that the hair coverings of animals were closely related to their lifestyle, whether they were active or passive. In 1973 Smith and Gong concluded that hair whorl (trichloglyph) pattern and human behaviour is linked since hair patterning is determined at the same time as the brain develops in the foetus. More recently Grandin et al. (1995), Randle (1998) and Lanier et al. (2001) linked features of facial hair whorls to behaviour and production in cattle. Hair whorl features have also been related to temperament in equines (Randle et al., 2003).


Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 989-1000
Author(s):  
Francis Minvielle

ABSTRACT A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.


Author(s):  
A. W. Eaton

How do artifacts get their functions? It is typically thought that an artifact’s function depends on its maker’s intentions. This chapter argues that this common understanding is fatally flawed. Nor can artifact function be understood in terms of current uses or capacities. Instead, it proposes that we understand artifact function on the etiological model that Ruth Millikan and others have proposed for the biological realm. This model offers a robustly normative conception of function, but it does so naturalistically by employing our best scientific theories, in particular natural selection. To help make this case, it proposes “living artifacts” (organisms designed for human purposes through artificial selection) as a bridge between the artifactual and the biological realms.


Author(s):  
David Kilcullen

This chapter draws on key concepts from evolutionary theory, anthropology, and social science to explore how adaptive enemies evolve and adapt under conditions of conflict. It identifies four key mechanisms of evolution in irregular warfare—social learning, natural selection, artificial selection (including both unconscious artificial selection and predator effects), and institutional adaptation—and gives examples of each. It also examines forms of conscious military innovation by states, and draws a distinction between peacetime (concept led) and wartime (reactive) modes of innovation. The chapter argues that domination of the operational environment by Western armed forces since the end of the Cold War has created evolutionary pressure to which all adversaries—state and non-state—have responded, and that this response is shaping new approaches to war.


2011 ◽  
Vol 28 (9) ◽  
pp. 2721-2721 ◽  
Author(s):  
C. Sauvage ◽  
S. Renaut ◽  
E. Normandeau ◽  
N. Derome ◽  
L. Bernatchez

2021 ◽  
Vol 2 ◽  
Author(s):  
Renato Augusto Corrêa dos Santos ◽  
Matthew E. Mead ◽  
Jacob L. Steenwyk ◽  
Olga Rivero-Menéndez ◽  
Ana Alastruey-Izquierdo ◽  
...  

Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.


Author(s):  
Ryan T. Cragun ◽  
J. Edward Sumerau

A number of scholars have suggested that religion may be explained using evolutionary theory and, in particular, natural selection. Much of this research suggests that behaviors encouraged by religions are beneficial while failing to illustrate a causal relationship between religiosity and these behaviors. This chapter challenges these approaches, arguing that religion is primarily a social phenomenon and that any health or evolutionary benefits that might indirectly derive from religions are actually attributable to the behaviors themselves: Religions have simply co-opted those behaviors. Additionally, it argues that natural selection alone is a problematic approach to understanding religion and suggests that Darwin’s notion of artificial selection be integrated into any attempts to use evolution to explain religion. We use examples from a variety of religions to illustrate how a socioevolutionary theory of religion that incorporates natural and artificial selection is preferable to approaches that rely exclusively on natural selection.


Sign in / Sign up

Export Citation Format

Share Document