scholarly journals A universal, genome-wide guide finder for CRISPR/Cas9 targeting in microbial genomes

2017 ◽  
Author(s):  
Michelle Spoto ◽  
Elizabeth Fleming ◽  
Julia Oh

AbstractBackgroundThe CRISPR/Cas system has significant potential to facilitate gene editing in a variety of bacterial species. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) represent modifications of the CRISPR/Cas9 system utilizing a catalytically inactive Cas9 protein for transcription repression or activation, respectively. While CRISPRi and CRISPRa have tremendous potential to systematically investigate gene function in bacteria, no pan-bacterial, genome-wide tools exist for guide discovery. We have created Guide Finder: a customizable, user-friendly program that can design guides for any annotated bacterial genome.ResultsGuide Finder designs guides from NGG PAM sites for any number of genes using an annotated genome and fasta file input by the user. Guides are filtered according to user-defined design parameters and removed if they contain any off-target matches. Iteration with lowered parameter thresholds allows the program to design guides for genes that did not produce guides with the more stringent parameters, a feature unique to Guide Finder. Guide Finder has been tested on a variety of diverse bacterial genomes, on average finding guides for 95% of genes. Moreover, guides designed by the program are functionally useful—focusing on CRISPRi as a potential application—as demonstrated by essential gene knockdown in two staphylococcal species.ConclusionsThrough the large-scale generation of guides, this open-access software will improve accessibility to CRISPR/Cas studies for a variety of bacterial species.

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Michelle Spoto ◽  
Changhui Guan ◽  
Elizabeth Fleming ◽  
Julia Oh

ABSTRACT The CRISPR/Cas system has significant potential to facilitate gene editing in a variety of bacterial species. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) represent modifications of the CRISPR/Cas9 system utilizing a catalytically inactive Cas9 protein for transcription repression and activation, respectively. While CRISPRi and CRISPRa have tremendous potential to systematically investigate gene function in bacteria, few programs are specifically tailored to identify guides in draft bacterial genomes genomewide. Furthermore, few programs offer open-source code with flexible design parameters for bacterial targeting. To address these limitations, we created GuideFinder, a customizable, user-friendly program that can design guides for any annotated bacterial genome. GuideFinder designs guides from NGG protospacer-adjacent motif (PAM) sites for any number of genes by the use of an annotated genome and FASTA file input by the user. Guides are filtered according to user-defined design parameters and removed if they contain any off-target matches. Iteration with lowered parameter thresholds allows the program to design guides for genes that did not produce guides with the more stringent parameters, one of several features unique to GuideFinder. GuideFinder can also identify paired guides for targeting multiplicity, whose validity we tested experimentally. GuideFinder has been tested on a variety of diverse bacterial genomes, finding guides for 95% of genes on average. Moreover, guides designed by the program are functionally useful—focusing on CRISPRi as a potential application—as demonstrated by essential gene knockdown in two staphylococcal species. Through the large-scale generation of guides, this open-access software will improve accessibility to CRISPR/Cas studies of a variety of bacterial species. IMPORTANCE With the explosion in our understanding of human and environmental microbial diversity, corresponding efforts to understand gene function in these organisms are strongly needed. CRISPR/Cas9 technology has revolutionized interrogation of gene function in a wide variety of model organisms. Efficient CRISPR guide design is required for systematic gene targeting. However, existing tools are not adapted for the broad needs of microbial targeting, which include extraordinary species and subspecies genetic diversity, the overwhelming majority of which is characterized by draft genomes. In addition, flexibility in guide design parameters is important to consider the wide range of factors that can affect guide efficacy, many of which can be species and strain specific. We designed GuideFinder, a customizable, user-friendly program that addresses the limitations of existing software and that can design guides for any annotated bacterial genome with numerous features that facilitate guide design in a wide variety of microorganisms.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Matthew R. Olm ◽  
Alexander Crits-Christoph ◽  
Spencer Diamond ◽  
Adi Lavy ◽  
Paula B. Matheus Carnevali ◽  
...  

ABSTRACT Longstanding questions relate to the existence of naturally distinct bacterial species and genetic approaches to distinguish them. Bacterial genomes in public databases form distinct groups, but these databases are subject to isolation and deposition biases. To avoid these biases, we compared 5,203 bacterial genomes from 1,457 environmental metagenomic samples to test for distinct clouds of diversity and evaluated metrics that could be used to define the species boundary. Bacterial genomes from the human gut, soil, and the ocean all exhibited gaps in whole-genome average nucleotide identities (ANI) near the previously suggested species threshold of 95% ANI. While genome-wide ratios of nonsynonymous and synonymous nucleotide differences (dN/dS) decrease until ANI values approach ∼98%, two methods for estimating homologous recombination approached zero at ∼95% ANI, supporting breakdown of recombination due to sequence divergence as a species-forming force. We evaluated 107 genome-based metrics for their ability to distinguish species when full genomes are not recovered. Full-length 16S rRNA genes were least useful, in part because they were underrecovered from metagenomes. However, many ribosomal proteins displayed both high metagenomic recoverability and species discrimination power. Taken together, our results verify the existence of sequence-discrete microbial species in metagenome-derived genomes and highlight the usefulness of ribosomal genes for gene-level species discrimination. IMPORTANCE There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics.


2014 ◽  
Vol 197 (1) ◽  
pp. 40-50 ◽  
Author(s):  
Chen-Hsun Tsai ◽  
Rick Liao ◽  
Brendan Chou ◽  
Michael Palumbo ◽  
Lydia M. Contreras

Interest in finding small RNAs (sRNAs) in bacteria has significantly increased in recent years due to their regulatory functions. Development of high-throughput methods and more sophisticated computational algorithms has allowed rapid identification of sRNA candidates in different species. However, given their various sizes (50 to 500 nucleotides [nt]) and their potential genomic locations in the 5′ and 3′ untranslated regions as well as in intergenic regions, identification and validation of true sRNAs have been challenging. In addition, the evolution of bacterial sRNAs across different species continues to be puzzling, given that they can exert similar functions with various sequences and structures. In this study, we analyzed the enrichment patterns of sRNAs in 13 well-annotated bacterial species using existing transcriptome and experimental data. All intergenic regions were analyzed by WU-BLAST to examine conservation levels relative to species within or outside their genus. In total, more than 900 validated bacterial sRNAs and 23,000 intergenic regions were analyzed. The results indicate that sRNAs are enriched in intergenic regions, which are longer and more conserved than the average intergenic regions in the corresponding bacterial genome. We also found that sRNA-coding regions have different conservation levels relative to their flanking regions. This work provides a way to analyze how noncoding RNAs are distributed in bacterial genomes and also shows conserved features of intergenic regions that encode sRNAs. These results also provide insight into the functions of regions surrounding sRNAs and into optimization of RNA search algorithms.


2020 ◽  
Author(s):  
Robert A. Petit ◽  
Timothy D. Read

AbstractSequencing of bacterial genomes using Illumina technology has become such a standard procedure that often data are generated faster than can be conveniently analyzed. We created a new series of pipelines called Bactopia, built using Nextflow workflow software, to provide efficient comparative genomic analyses for bacterial species or genera. Bactopia consists of a dataset setup step (Bactopia Datasets; BaDs) where a series of customizable datasets are created for the species of interest; the Bactopia Analysis Pipeline (BaAP), which performs quality control, genome assembly and several other functions based on the available datasets and outputs the processed data to a structured directory format; and a series of Bactopia Tools (BaTs) that perform specific post-processing on some or all of the processed data. BaTs include pan-genome analysis, computing average nucleotide identity between samples, extracting and profiling the 16S genes and taxonomic classification using highly conserved genes. It is expected that the number of BaTs will increase to fill specific applications in the future. As a demonstration, we performed an analysis of 1,664 public Lactobacillus genomes, focusing on L. crispatus, a species that is a common part of the human vaginal microbiome. Bactopia is an open source system that can scale from projects as small as one bacterial genome to thousands that allows for great flexibility in choosing comparison datasets and options for downstream analysis. Bactopia code can be accessed at https://www.github.com/bactopia/bactopia.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gong-Hua Li ◽  
Shaoxing Dai ◽  
Feifei Han ◽  
Wenxing Li ◽  
Jingfei Huang ◽  
...  

Abstract Background Constraint-based metabolic modeling has been applied to understand metabolism related disease mechanisms, to predict potential new drug targets and anti-metabolites, and to identify biomarkers of complex diseases. Although the state-of-art modeling toolbox, COBRA 3.0, is powerful, it requires substantial computing time conducting flux balance analysis, knockout analysis, and Markov Chain Monte Carlo (MCMC) sampling, which may limit its application in large scale genome-wide analysis. Results Here, we rewrote the underlying code of COBRA 3.0 using C/C++, and developed a toolbox, termed FastMM, to effectively conduct constraint-based metabolic modeling. The results showed that FastMM is 2~400 times faster than COBRA 3.0 in performing flux balance analysis and knockout analysis and returns consistent outputs. When applied to MCMC sampling, FastMM is 8 times faster than COBRA 3.0. FastMM is also faster than some efficient metabolic modeling applications, such as Cobrapy and Fast-SL. In addition, we developed a Matlab/Octave interface for fast metabolic modeling. This interface was fully compatible with COBRA 3.0, enabling users to easily perform complex applications for metabolic modeling. For example, users who do not have deep constraint-based metabolic model knowledge can just type one command in Matlab/Octave to perform personalized metabolic modeling. Users can also use the advance and multiple threading parameters for complex metabolic modeling. Thus, we provided an efficient and user-friendly solution to perform large scale genome-wide metabolic modeling. For example, FastMM can be applied to the modeling of individual cancer metabolic profiles of hundreds to thousands of samples in the Cancer Genome Atlas (TCGA). Conclusion FastMM is an efficient and user-friendly toolbox for large-scale personalized constraint-based metabolic modeling. It can serve as a complementary and invaluable improvement to the existing functionalities in COBRA 3.0. FastMM is under GPL license and can be freely available at GitHub site: https://github.com/GonghuaLi/FastMM.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Na Han ◽  
Weiwen Yu ◽  
Yujun Qiang ◽  
Wen Zhang

Type IV secretion system (T4SS) can mediate the passage of macromolecules across cellular membranes and is essential for virulent and genetic material exchange among bacterial species. The Type IV Secretion Project 2.0 (T4SP 2.0) database is an improved and extended version of the platform released in 2013 aimed at assisting with the detection of Type IV secretion systems (T4SS) in bacterial genomes. This advanced version provides users with web server tools for detecting the existence and variations of T4SS genes online. The new interface for the genome browser provides a user-friendly access to the most complete and accurate resource of T4SS gene information (e.g., gene number, name, type, position, sequence, related articles, and quick links to other webs). Currently, this online database includes T4SS information of 5239 bacterial strains.Conclusions. T4SS is one of the most versatile secretion systems necessary for the virulence and survival of bacteria and the secretion of protein and/or DNA substrates from a donor to a recipient cell. This database on virB/D genes of the T4SS system will help scientists worldwide to improve their knowledge on secretion systems and also identify potential pathogenic mechanisms of various microbial species.


2020 ◽  
Author(s):  
Debarati Roychowdhury ◽  
Samir Gupta ◽  
Xihan Qin ◽  
Cecilia N. Arighi ◽  
K. Vijay-Shanker

AbstractMotivationmicroRNAs (miRNAs) are essential gene regulators and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications, and developing new hypotheses built on previous knowledge. Here, we present emiRIT, a text mining-based resource, which presents miRNA information mined from the literature through a user-friendly interface.ResultsWe collected 149,233 miRNA-PubMed ID pairs from Medline between January 1997 to May 2020. emiRIT currently contains miRNA-gene regulation (60,491 relations); miRNA-disease (cancer) (12,300 relations); miRNA-biological process and pathways (23,390 relations); and circulatory miRNAs in extracellular locations (3,782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively.ConclusionWe provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large-scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource’s information coverage, in the absence of gold standards, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of diseases. Database URL: https://research.bioinformatics.udel.edu/emirit/


2017 ◽  
Author(s):  
Lena M. Joesch-Cohen ◽  
Max Robinson ◽  
Neda Jabbari ◽  
Christopher Lausted ◽  
Gustavo Glusman

AbstractBackgroundBacterial genomes have characteristic compositional skews, which are differences in nucleotide frequency between the leading and lagging DNA strands across a segment of a genome. It is thought that these strand asymmetries arise as a result of mutational biases and selective constraints, particularly for energy efficiency. Analysis of compositional skews in a diverse set of bacteria provides a comparative context in which mutational and selective environmental constraints can be studied. These analyses typically require finished and well-annotated genomic sequences.ResultsWe present three novel metrics for examining genome composition skews; all three metrics can be computed for unfinished or partially-annotated genomes. The first two metrics, (dot-skew and cross-skew) depend on sequence and gene annotation of a single genome, while the third metric (residual skew) highlights unusual genomes by subtracting a GC content-based model of a library of genome sequences. We applied these metrics to all 7738 available bacterial genomes, including partial drafts, and identified outlier species. A number of these outliers (i.e., Borrelia, Ehrlichia, Kinetoplastibacterium, and Phytoplasma) display similar skew patterns despite only distant phylogenetic relationship. While unrelated, some of the outlier bacterial species share lifestyle characteristics, in particular intracellularity and biosynthetic dependence on their hosts.ConclusionsOur novel metrics appear to reflect the effects of biosynthetic constraints and adaptations to life within one or more hosts on genome composition. We provide results for each analyzed genome, software and interactive visualizations at http://db.systemsbiology.net/gestalt/skew_metrics.


mSystems ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Robert A. Petit ◽  
Timothy D. Read

ABSTRACT Sequencing of bacterial genomes using Illumina technology has become such a standard procedure that often data are generated faster than can be conveniently analyzed. We created a new series of pipelines called Bactopia, built using Nextflow workflow software, to provide efficient comparative genomic analyses for bacterial species or genera. Bactopia consists of a data set setup step (Bactopia Data Sets [BaDs]), which creates a series of customizable data sets for the species of interest, the Bactopia Analysis Pipeline (BaAP), which performs quality control, genome assembly, and several other functions based on the available data sets and outputs the processed data to a structured directory format, and a series of Bactopia Tools (BaTs) that perform specific postprocessing on some or all of the processed data. BaTs include pan-genome analysis, computing average nucleotide identity between samples, extracting and profiling the 16S genes, and taxonomic classification using highly conserved genes. It is expected that the number of BaTs will increase to fill specific applications in the future. As a demonstration, we performed an analysis of 1,664 public Lactobacillus genomes, focusing on Lactobacillus crispatus, a species that is a common part of the human vaginal microbiome. Bactopia is an open source system that can scale from projects as small as one bacterial genome to ones including thousands of genomes and that allows for great flexibility in choosing comparison data sets and options for downstream analysis. Bactopia code can be accessed at https://www.github.com/bactopia/bactopia. IMPORTANCE It is now relatively easy to obtain a high-quality draft genome sequence of a bacterium, but bioinformatic analysis requires organization and optimization of multiple open source software tools. We present Bactopia, a pipeline for bacterial genome analysis, as an option for processing bacterial genome data. Bactopia also automates downloading of data from multiple public sources and species-specific customization. Because the pipeline is written in the Nextflow language, analyses can be scaled from individual genomes on a local computer to thousands of genomes using cloud resources. As a usage example, we processed 1,664 Lactobacillus genomes from public sources and used comparative analysis workflows (Bactopia Tools) to identify and analyze members of the L. crispatus species.


Author(s):  
Tianshun Gao ◽  
Jiang Qian

Abstract Enhancers are distal cis-regulatory elements that activate the transcription of their target genes. They regulate a wide range of important biological functions and processes, including embryogenesis, development, and homeostasis. As more and more large-scale technologies were developed for enhancer identification, a comprehensive database is highly desirable for enhancer annotation based on various genome-wide profiling datasets across different species. Here, we present an updated database EnhancerAtlas 2.0 (http://www.enhanceratlas.org/indexv2.php), covering 586 tissue/cell types that include a large number of normal tissues, cancer cell lines, and cells at different development stages across nine species. Overall, the database contains 13 494 603 enhancers, which were obtained from 16 055 datasets using 12 high-throughput experiment methods (e.g. H3K4me1/H3K27ac, DNase-seq/ATAC-seq, P300, POLR2A, CAGE, ChIA-PET, GRO-seq, STARR-seq and MPRA). The updated version is a huge expansion of the first version, which only contains the enhancers in human cells. In addition, we predicted enhancer–target gene relationships in human, mouse and fly. Finally, the users can search enhancers and enhancer–target gene relationships through five user-friendly, interactive modules. We believe the new annotation of enhancers in EnhancerAtlas 2.0 will facilitate users to perform useful functional analysis of enhancers in various genomes.


Sign in / Sign up

Export Citation Format

Share Document