scholarly journals Homologues of key circadian clock genes present in Verticillium dahliae do not direct circadian programs of development or mRNA abundance

2019 ◽  
Author(s):  
Emma Cascant-Lopez ◽  
Susan K. Crosthwaite ◽  
Louise J. Johnson ◽  
Richard J. Harrison

AbstractMany organisms harbour circadian clocks that promote their adaptation to the rhythmic environment. While a broad knowledge of the molecular mechanism of circadian clocks has been gained through the fungal model Neurospora crassa, little is known about circadian clocks in other fungi. N. crassa belongs to the same class as many important plant pathogens including the vascular wilt fungus Verticillium dahliae. We identified homologues of N. crassa clock proteins in V. dahliae, which showed high conservation in key protein domains. However, no evidence for an endogenous, free-running and entrainable rhythm was observed in the daily formation of conidia and microsclerotia. In N. crassa the frequency (frq) gene encodes a central clock protein expressed rhythmically and in response to light. In contrast, expression of Vdfrq is not light-regulated. Temporal gene expression profiling over 48 hours in constant darkness and temperature revealed no circadian expression of key clock genes. Furthermore, RNA-seq over a 24 h time-course revealed no robust oscillations of RNA in constant darkness. Comparison of gene expression between wild-type V. dahliae and a ΔVdfrq mutant showed that genes involved in metabolism, transport and redox processes are mis-regulated in the absence of Vdfrq. In addition, VdΔfrq mutants display growth defects and reduced pathogenicity in a strain dependent manner. Our data indicate that if a circadian clock exists in Verticillium, it is based on alternative mechanisms such as post-transcriptional interactions of VdFRQ and the WC proteins or the components of a FRQ-less oscillator. Alternatively, it could be that whilst the original functions of the clock proteins have been maintained, in this species the interactions that generate rhythmicity have been lost or are only triggered when specific environmental conditions are met. The presence of conserved clock genes in genomes should not be taken as definitive evidence of circadian function.Author summaryCircadian clocks are used by organisms to orchestrate the activity of cellular processes such that they occur at an optimal time of day. Research carried out in the filamentous fungus Neurospora crassa has revealed a huge amount of information about the components its circadian clock, its interactions with the environment and how it drives cellular biochemistry and physiology. Although homologues of the Neurospora clock genes are present in a number of fungi, functional clocks have been demonstrated in a just a handful. Importantly, a link between the circadian clock of the plant pathogen Botrytis cinerea and virulence has recently been reported. We report that another significant plant pathogen, Verticillium dahliae, contains well-conserved homologues of all key clock genes. We find that diurnal development of conidia and microsclerotia is not influenced by a circadian clock. Furthermore, in a constant environment we find no evidence of rhythmic transcript accumulation. However, deletion of the central clock component results in altered growth and reduced virulence. This led us to question the role of clock genes in Verticillium. We are forced to consider that in this species the interactions that generate rhythmicity have been lost, are generated purely via post-transcriptional modification of clock proteins, are only triggered when specific environmental conditions are met or never evolved.

2020 ◽  
Author(s):  
Yangbo Xiao ◽  
Ye Yuan ◽  
Mariana Jimenez ◽  
Neeraj Soni ◽  
Swathi Yadlapalli

ABSTRACTCircadian clocks regulate ∼24 hour oscillations in gene expression, behavior, and physiology. While the molecular and neural mechanisms of circadian rhythms are well characterized, how cellular organization of clock components controls circadian clock regulation remains poorly understood. Here, we elucidate how clock proteins regulate circadian rhythms by controlling the spatiotemporal organization of clock genes. Using high-resolution live imaging techniques we demonstrate that Drosophila clock proteins are concentrated in a few discrete foci and are organized at the nuclear envelope; these results are in contrast to longstanding expectations that clock proteins are diffusely distributed in the nucleus. We also show that clock protein foci are highly dynamic and change in number, size, and localization over the circadian cycle. Further, we demonstrate that clock genes are positioned at the nuclear periphery by the clock proteins precisely during the circadian repression phase, suggesting that subnuclear localization of clock genes plays an important role in the control of rhythmic gene expression. Finally, we show that Lamin B receptor, a nuclear envelope protein, is required for peripheral localization of clock protein foci and clock genes and for normal circadian rhythms. These results reveal that clock proteins form dynamic nuclear foci and play a hitherto unexpected role in the subnuclear reorganization of clock genes to control circadian rhythms, identifying a novel mechanism of circadian regulation. Our results further suggest a new role for clock protein foci in the clustering of clock-regulated genes during the repression phase to control gene co-regulation and circadian rhythms.SIGNIFICANCEAlmost all living organisms have evolved circadian clocks to tell time. Circadian clocks regulate ∼24-hour oscillations in gene expression, behavior and physiology. Here, we reveal the surprisingly sophisticated spatiotemporal organization of clock proteins and clock genes and its critical role in circadian clock function. We show, in contrast to current expectations, that clock proteins are concentrated in a few discrete, dynamic nuclear foci at the nuclear envelope during the repression phase. Further, we uncovered several unexpected features of clock protein foci, including their role in positioning the clock genes at the nuclear envelope precisely during the repression phase to enable circadian rhythms. These studies provide fundamental new insights into the cellular mechanisms of circadian rhythms and establish direct links between nuclear organization and circadian clocks.


2019 ◽  
Author(s):  
Enrique Arboleda ◽  
Martin Zurl ◽  
Kristin Tessmar-Raible

AbstractBackgroundThe marine bristle wormPlatynereis dumeriliiis a useful functional model system for the study of the circadian clock and its interplay with others, e.g. circalunar clocks. The focus has so far been on the worm’s head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm’s chromatophores, investigate locomotion as read-out and include molecular analyses.ResultsWe establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here we show that upon decapitation it still follows the light-dark cycle, but does not free-run under constant darkness. We also observe the rhythmicity of pigments in the worm’s individual chromatophores, confirming that chromatophore size changes follow a circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation.ConclusionsHere we provide the first basic characterization of the peripheral circadian clock ofPlatynereis dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms. Circadian changes in chromatophore size can however continue for several days in the absence of light/dark changes and the head. Thus, the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should be considered when investigating the interactions of clocks with different period lengths, a notion likely also true for other organisms with circadian and non-circadian clocks.


2020 ◽  
Author(s):  
Tsedey Mekbib ◽  
Ting-Chung Suen ◽  
Aisha Rollins-Hairston ◽  
Kiandra Smith ◽  
Ariel Armstrong ◽  
...  

AbstractCircadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used Siah2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of Siah2 deficiency on the regulation of rhythmically expressed genes. The absence of Siah2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic hepatic transcriptome. Siah2 loss, only in females, increased the expression of 100’s of genes selectively at mid-day, resulting in a ∼70% increase in the number of rhythmically expressed genes, and shifted the expression of 100’s of other genes from a mid-night peak, to a mid-day peak. The combined result is a near inversion of overall rhythmicity in gene expression selectively in Siah2-deficient females. This dramatic reorganization created a substantial misalignment between rhythmic liver functions and feeding/behavioral rhythms, and consequently impaired daily patterns of lipid/lipoprotein metabolism and metabolic responses to high-fat diet. Collectively, our results suggest that Siah2 is part of a female-specific circadian mechanism important for maintaining metabolic homeostasis and may play a key role in the establishing sexual dimorphisms in metabolism.Signficance statementCircadian clocks drive daily rhythms in many aspects of our physiology, optimally aligning functions across the day-night cycle. How circadian clocks drives these rhythms is thought to be due to largely similar transcriptional pathways and mechanisms in males and females, although some rhythms are modulated by sex and growth hormones. In this study, we present data that uncover the surprising existence of a female-specific transcriptional mechanism that is essential for the proper rhythmic control of gene expression in the liver. Disrupting this mechanism substantially impairs the circadian regulation of lipid and cholesterol metabolism selectively in females, impairing their resistance to diet-induced obesity. These results reveal that circadian clocks may be broadly coupled to physiological rhythms using unexpected sex-specific mechanisms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Elena Gangitano ◽  
Lucio Gnessi ◽  
Andrea Lenzi ◽  
David Ray

Circadian rhythms underpin most physiological processes, including energy metabolism. The core circadian clock consists of a transcription-translation negative feedback loop, and is synchronized to light-dark cycles by virtue of light input from the retina, to the central clock in the suprachiasmatic nucleus in the hypothalamus. All cells in the body have circadian oscillators which are entrained to the central clock by neural and humoral signals. In addition to light entrainment of the central clock in the brain, it now emerges that other stimuli can drive circadian clock function in peripheral tissues, the major one being food. This can then drive the liver clock to be misaligned with the central brain clock, a situation of internal misalignment with metabolic disease consequences. Such misalignment is prevalent, with shift workers making up 20% of the working population. The effects of diet composition on the clock are not completely clarified yet. High-fat diet and fasting influence circadian expression of clock genes, inducing phase-advance and phase-delay in animal models. Ketogenic diet (KD) is able to induce a metabolic switch from carbohydrate to fatty acid oxidation, miming a fasting state. In recent years, some animal studies have been conducted to investigate the ability of the KD to modify circadian gene expression, and demonstrated that the KD alters circadian rhythm and induces a rearrangement of metabolic gene expression. These findings may lead to new approaches to obesity and metabolic pathologies treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebekah George ◽  
Ralf Stanewsky

Circadian clocks are cell-autonomous endogenous oscillators, generated and maintained by self-sustained 24-h rhythms of clock gene expression. In the fruit fly Drosophila melanogaster, these daily rhythms of gene expression regulate the activity of approximately 150 clock neurons in the fly brain, which are responsible for driving the daily rest/activity cycles of these insects. Despite their endogenous character, circadian clocks communicate with the environment in order to synchronize their self-sustained molecular oscillations and neuronal activity rhythms (internal time) with the daily changes of light and temperature dictated by the Earth’s rotation around its axis (external time). Light and temperature changes are reliable time cues (Zeitgeber) used by many organisms to synchronize their circadian clock to the external time. In Drosophila, both light and temperature fluctuations robustly synchronize the circadian clock in the absence of the other Zeitgeber. The complex mechanisms for synchronization to the daily light–dark cycles are understood with impressive detail. In contrast, our knowledge about how the daily temperature fluctuations synchronize the fly clock is rather limited. Whereas light synchronization relies on peripheral and clock-cell autonomous photoreceptors, temperature input to the clock appears to rely mainly on sensory cells located in the peripheral nervous system of the fly. Recent studies suggest that sensory structures located in body and head appendages are able to detect temperature fluctuations and to signal this information to the brain clock. This review will summarize these studies and their implications about the mechanisms underlying temperature synchronization.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kate A. Rawlinson ◽  
Adam J. Reid ◽  
Zhigang Lu ◽  
Patrick Driguez ◽  
Anna Wawer ◽  
...  

Abstract Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis.


2021 ◽  
Author(s):  
Valentin Wucher ◽  
Reza Sodaei ◽  
Raziel Amador ◽  
Manuel Irimia ◽  
Roderic Guigó

AbstractCircadian and circannual cycles trigger physiological changes whose reflection on human transcriptomes remains largely uncharted. We used the time and season of death of 932 individuals from GTEx to jointly investigate transcriptomic changes associated with those cycles across multiple tissues. For most tissues, we found little overlap between genes changing expression during day-night and among seasons. Although all tissues remodeled their transcriptomes, brain and gonadal tissues exhibited the highest seasonality, whereas those in the thoracic cavity showed stronger day-night regulation. Core clock genes displayed marked day-night differences across multiple tissues, which were largely conserved in baboon and mouse, but adapted to their nocturnal or diurnal habits. Seasonal variation of expression affected multiple pathways and were enriched among genes associated with SARS-CoV-2 infection. Furthermore, they unveiled cytoarchitectural changes in brain subregions. Altogether, our results provide the first combined atlas of how transcriptomes from human tissues adapt to major cycling environmental conditions.


Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1832-1835 ◽  
Author(s):  
Allan B. James ◽  
José A. Monreal ◽  
Gillian A. Nimmo ◽  
Ciarán L. Kelly ◽  
Pawel Herzyk ◽  
...  

The circadian oscillator in eukaryotes consists of several interlocking feedback loops through which the expression of clock genes is controlled. It is generally assumed that all plant cells contain essentially identical and cell-autonomous multiloop clocks. Here, we show that the circadian clock in the roots of matureArabidopsisplants differs markedly from that in the shoots and that the root clock is synchronized by a photosynthesis-related signal from the shoot. Two of the feedback loops of the plant circadian clock are disengaged in roots, because two key clock components, the transcription factors CCA1 and LHY, are able to inhibit gene expression in shoots but not in roots. Thus, the plant clock is organ-specific but not organ-autonomous.


2008 ◽  
Vol 28 (12) ◽  
pp. 4080-4092 ◽  
Author(s):  
Ayumu Nakashima ◽  
Takeshi Kawamoto ◽  
Kiyomasa K. Honda ◽  
Taichi Ueshima ◽  
Mitsuhide Noshiro ◽  
...  

ABSTRACT DEC1 suppresses CLOCK/BMAL1-enhanced promoter activity, but its role in the circadian system of mammals remains unclear. Here we examined the effect of Dec1 overexpression or deficiency on circadian gene expression triggered with 50% serum. Overexpression of Dec1 delayed the phase of clock genes such as Dec1, Dec2, Per1, and Dbp that contain E boxes in their regulatory regions, whereas it had little effect on the circadian phase of Per2 and Cry1 carrying CACGTT E′ boxes. In contrast, Dec1 deficiency advanced the phase of the E-box-containing clock genes but not that of the E′-box-containing clock genes. Accordingly, DEC1 showed strong binding and transrepression on the E box, but not on the E′ box, in chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Dec1 −/− mice showed behavioral rhythms with slightly but significantly longer circadian periods under conditions of constant darkness and faster reentrainment to a 6-h phase-advanced shift of a light-dark cycle. Knockdown of Dec2 with small interfering RNA advanced the phase of Dec1 and Dbp expression, and double knockdown of Dec1 and Dec2 had much stronger effects on the expression of the E-box-containing clock genes. These findings suggest that DEC1, along with DEC2, plays a role in the finer regulation and robustness of the molecular clock.


Sign in / Sign up

Export Citation Format

Share Document