scholarly journals Resolving mechanisms of immune-mediated disease in primary CD4 T cells

2020 ◽  
Author(s):  
C Bourges ◽  
AF Groff ◽  
OS Burren ◽  
C Gerhardinger ◽  
K Mattioli ◽  
...  

ABSTRACTDeriving mechanisms of immune-mediated disease from GWAS data remains a formidable challenge, with attempts to identify causal variants being frequently hampered by linkage disequilibrium. To determine whether causal variants could be identified via their functional effects, we adapted a massively-parallel reporter assay for use in primary CD4 T-cells, key effectors of many immune-mediated diseases. Using the results to guide further study, we provide a generalisable framework for resolving disease mechanisms from non-coding associations – illustrated by a locus linked to 6 immune-mediated diseases, where the lead functional variant causally disrupts a super-enhancer within an NF-κB-driven regulatory circuit, triggering unrestrained T-cell activation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A595-A595
Author(s):  
Karin Enell Smith ◽  
Anneli Nilsson ◽  
Peter Ellmark

BackgroundATOR-1017 is a Fcγ-receptor (FcγR) crosslinking dependent agonistic IgG4 antibody targeting the costimulatory receptor 4 1BB, designed for improved tolerability and efficacy. 4-1BB is highly expressed on tumor infiltrating CD8+ T effector cells (T effs) in several cancer indications. By binding to 4-1BB, ATOR-1017 enhances the activity of tumor reactive T effs and NK cells within the tumor and induces a potent anti-tumor response. 4-1BB is a promising candidate for immunotherapy and holds great potential for combination with other immunomodulatory antibodies, targeting e.g. the PD-1 pathway.MethodsHuman 4-1BB knock-in transgenic mice with established murine colon carcinoma MC38 tumors were used to demonstrate anti-tumor efficacy after systemic treatment with ATOR-1017 in combination with anti-PD-1. Further, the effect of combining ATOR-1017 with anti-PD-1 on T cell activation (measured as production of IFNγ) was evaluated in a mixed lymphocyte reaction (MLR) assay with human primary CD4+ T cells and mature monocyte-derived DCs (mDC) expressing endogenous levels of both 4-1BB and PD-1.ResultsATOR-1017 in combination with anti-PD-1 improved survival and reduced tumor growth signifcantly in human 4-1BB knock-in transgenic mice with established tumors compared with each monotherapy alone. The potential for combining ATOR-1017 and PD-1 was further supported by data from a MLR assay demonstrating that the combination of ATOR-1017 with anti-PD-1 induced a more potent CD4+ T cells activation than each monotherapy alone.The functional activation profile of ATOR-1017 is expected to minimize the risk of systemic immune activation and toxicity, by directing a potent immune response to immune cells in tumor tissue and tumor draining lymph nodes. This is supported by early data from the ongoing first-in-human phase I study where ATOR-1017 has been shown to be safe and tolerable.ConclusionsIn summary, these results support further clinical development of ATOR-1017 in combination with PD-1 antibodies. By combining ATOR-1017 with anti-PD-1, tumor infiltrating T cells can be more effectively activated and potentially increase the response rate in multiple indications.Ethics ApprovalAll animal procedures were in accordance to IACUC guidance


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A929-A930
Author(s):  
Victoria Smith ◽  
Sterling Eckard ◽  
Bianca Rojo ◽  
Patrick Chun

BackgroundMDSC produce numerous immune-suppressive factors and are associated with poor outcomes across different cancers. They are frequently elevated in patients experiencing inadequate benefit from checkpoint blockade and there is a crucial need for therapies for this patient population. MDSC are recruited from bone marrow in response to both tumor signaling and T cell activation, and their accumulation in tumors and lymphatics can limit the potential benefits of immunostimulatory therapies. AMV564 is a bivalent T cell engager that selectively depletes MDSC. In a phase 1 study, pharmacodynamic analyses revealed significant depletion of MDSC, T cell activation, expansion of the T cell repertoire and an IFN-gamma-dominant cytokine profile with comparatively limited IL6 induction.1 Monotherapy activity including a confirmed RECIST complete response was observed. The clinical and pharmacodynamic profiles of AMV564 are being further evaluated in specific patient cohorts, including patients progressing on checkpoint blockade.MethodsIn a phase 1b expansion study (NCT04128423), patient cohorts with cancers more likely to include actionable tumor antigens were selected for treatment with AMV564, with most patients representing checkpoint treatment failures. An additional cohort of patients included heterogeneous tumor types stratified by tumor mutation burden (TMB) score from circulating tumor DNA. Pharmacodynamic analyses including direct immunophenotyping (flow cytometry) of T and myeloid cell compartments in peripheral blood were performed on patients treated with AMV564 (15 µg daily for 10 of 21 days by subcutaneous injection).ResultsChanges in myeloid and T cell profiles consistent with the pharmacodynamic signature of AMV564 were observed in patients receiving AMV564 despite one or more prior lines of checkpoint blockade therapy. Notably, both high baseline MDSC and elevated induction of MDSC after T cell activation were apparent (figure 1). Control of MDSC by AMV564 was associated with increases in both effector CD8 and CD4 T cells (figure 2). Extremely elevated levels of regulatory T cells were often observed: after treatment with AMV564, a Th-1-like repolarization of these cells was apparent, often associated with reduction in CD25 (figure 3).Abstract 887 Figure 1Significantly higher induction of M-MDSC is apparent in patients previously receiving checkpoint blockade (CPB) after T cell activation by AMV564.Abstract 887 Figure 2Treatment with AMV564 promotes increases in effector CD8 and CD4 T cells in patients previously treated with CPB (examples shown are Merkel cell carcinoma (MCC) and head and neck squamous cell carcinoma (HNSCC)).Abstract 887 Figure 3Th-1 like repolarization of Treg is apparent in patients previously treated with CPB (MCC, HNSCC examples) after treatment with AMV564 (a). Example CD25 low and T-Bet high cells in HNSCC patient (arrow, b).ConclusionsTreatment with AMV564 yielded substantial reductions in MDSC and favorable polarization of CD8 and CD4 T cells, including Th1-like polarization of Treg. This signature was apparent in patients previously treated with checkpoint inhibitors, despite strong induction of MDSC in response to T cell activation, and high baseline levels (>20%) of Treg.Trial RegistrationNCT04128423ReferencesSmith V, Eckard S, Rettig MP, et al. AMV564, a bivalent, bispecific T-cell engager, depletes myeloid derived suppressor cells and activates T cells in cancer patients. Cancer Res 2020;80(16 Supplement):5699.Ethics ApprovalThis study was approved by the Institutional Review Board (IRB) or Independent Ethics Committee (IEC) at each participating institution (including Ohio State University, MD Anderson Cancer Center, Duke University, University of California Los Angeles, Advent Health, Christ Hospital). All participants gave informed consent for samples used to generate pharmacodynamic data. No sensitive of identifiable information is included.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Eric J. Regele ◽  
Elizabeth M. Runge ◽  
Felicia M. Kennedy ◽  
Virginia M. Sanders ◽  
Kathryn J. Jones

Background and Hypothesis:  It is unknown how the immune system maintains the majority of facial motoneuron (FMN) survival after axotomy. IL-10 cytokine is necessary for FMN survival and CD4+ T cells are activated and play a critical role in survival, but do not produce IL-10. It was proposed that the source of IL-10 resides in the CNS; however, it is possible that antigen presenting cells (APC) produce IL-10 which activate CD4+ T cells to a neuroprotective phenotype. The regulation of IL-10 receptors (IL-10R) in immunodeficient compared to wild-type (WT) mice in the facial nucleus was studied in this experiment, as well as the possibility of the PNS producing IL-10.  Experimental Design or Project Methods:  To study APC’s role in motoneuron survival, we transferred WT whole splenocytes into global IL-10 knock out (KO) mice prior to axotomy. To study IL-10R gene expression, immunodeficient RAG-2 KO mice received WT or IL-10R-/- CD4+ T cells prior to axotomy.   Results:  qPCR revealed that WT mice upregulate IL-10R after axotomy, whereas RAG-2 KO mice had decreased expression comparatively. RAG-2 mice who received WT CD4+ T cells transfer restored IL-10R comparable to WT values.IL-10R was rescued in RAG-2 mice after the adoptive transfer of WT CD4+T cells. When IL-10R-/- CD4+ cells were transferred into RAG-2 mice, IL-10R values were restored; however, these T cells were unable to rescue FMN survival.   Conclusion and Potential Impact:  If WT whole splenocytes transferred into global IL-10 KO mice rescue FMN survival, it implies that APC play a role in producing IL-10. If they cannot mediate rescue, then peripheral IL-10 is unlikely sufficient for FMN survival. CD4+ T cells regulate central IL-10R response and must respond to IL-10 to mediate FMN survival. The transfer of whole splenocytes provides APCs capable of producing IL-10 and CD4+ T cells capable of responding to IL-10. 


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2015 ◽  
Vol 36 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Jin-Chao Xu ◽  
Yong-Bo Peng ◽  
Ming-Yu Wei ◽  
Yi-Fan Wu ◽  
Donglin Guo ◽  
...  

Background/Aims: Bitter-tasting chloroquine can suppress T cell activation by inhibiting Ca2+ signaling. However, the mechanism of inhibition remains largely unclear. Methods: In this study, CD4+ T cells were isolated from the thymus, and the calcium content of CD4+ thymocytes was measured using fura-2 AM and a TILL imaging system. Pyrazole-3 (Pyr3), thapsigargin (TG), and caffeine were used to assess the effects of chloroquine on the intracellular Ca2+ content of CD4+ T cells. Results: In murine CD4+ thymocytes, chloroquine decreased the TG-triggered intracellular Ca2+ increase in a dose-dependent manner. In the absence of chloroquine under Ca2+-free conditions (0 mM Ca2+ and 0.5 mM EGTA), TG induced a transient Ca2+ increase. After restoration of the extracellular Ca2+ concentration to 2 mM, a dramatic Ca2+ increase occurred. This elevation was completely blocked by chloroquine and was markedly inhibited by Pyr3, a selective antagonist of transient receptor potential C3 (TRPC3) channel and stromal interaction molecule (STIM)/Orai channel. Furthermore, the TG-induced transient Ca2+ increase under Ca2+-free conditions was eliminated in the presence of chloroquine. Chloroquine also blocked the dialyzed inositol-1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ increase. However, chloroquine was not able to decrease the caffeine-induced Ca2+ increase. Conclusion: These data indicate that chloroquine inhibits the elevation of intracellular Ca2+ in thymic CD4+ T cells by inhibiting IP3 receptor-mediated Ca2+ release from intracellular stores and TRPC3 channel-mediated and/or STIM/Orai channel-mediated Ca2+ influx.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


2001 ◽  
Vol 194 (7) ◽  
pp. 893-902 ◽  
Author(s):  
Alden M. Doyle ◽  
Alan C. Mullen ◽  
Alejandro V. Villarino ◽  
Anne S. Hutchins ◽  
Frances A. High ◽  
...  

Cytotoxic T lymphocyte antigen (CTLA)-4 plays an essential role in immunologic homeostasis. How this negative regulator of T cell activation executes its functions has remained controversial. We now provide evidence that CTLA-4 mediates a cell-intrinsic counterbalance to restrict the clonal expansion of proliferating CD4+ T cells. The regulation of CTLA-4 expression and function ensures that, after ∼3 cell divisions of expansion, most progeny will succumb to either proliferative arrest or death over the ensuing three cell divisions. The quantitative precision of the counterbalance hinges on the graded, time-independent induction of CTLA-4 expression during the first three cell divisions. In contrast to the limits imposed on unpolarized cells, T helper type 1 (Th1) and Th2 effector progeny may be rescued from proliferative arrest by interleukin (IL)-12 and IL-4 signaling, respectively, allowing appropriately stimulated progeny to proceed to the stage of tissue homing. These results suggest that the cell-autonomous regulation of CTLA-4 induction may be a central checkpoint of clonal expansion of CD4+ T cells, allowing temporally and spatially restricted growth of progeny to be dictated by the nature of the threat posed to the host.


Sign in / Sign up

Export Citation Format

Share Document