scholarly journals Systematically gap-filling the genome-scale metabolic model of CHO cells

Author(s):  
Hamideh Fouladiha ◽  
Sayed-Amir Marashi ◽  
Shangzhong Li ◽  
Zerong Li ◽  
Helen O. Masson ◽  
...  

AbstractObjectiveChinese hamster ovary (CHO) cells are the leading cell factories for producing recombinant proteins in the biopharmaceutical industry. In this regard, constraint-based metabolic models are useful platforms to perform computational analysis of cell metabolism. These models need to be regularly updated in order to include the latest biochemical data of the cells, and to increase their predictive power. Here, we provide an update to iCHO1766, the metabolic model of CHO cells.ResultsWe expanded the existing model of Chinese hamster metabolism with the help of four gap-filling approaches, leading to the addition of 773 new reactions and 335 new genes. We incorporated these into an updated genome-scale metabolic network model of CHO cells, named iCHO2101. In this updated model, the number of reactions and pathways capable of carrying flux is substantially increased.ConclusionsThe present CHO model is an important step towards more complete metabolic models of CHO cells.

Author(s):  
Hock Chuan Yeo ◽  
Jongkwang Hong ◽  
Meiyappan Lakshmanan ◽  
Dong-Yup Lee

ABSTRACTChinese hamster ovary (CHO) cells are most prevalently used for producing recombinant therapeutics in biomanufacturing. Recently, more rational and systems approaches have been increasingly exploited to identify key metabolic bottlenecks and engineering targets for cell line engineering and process development based on the CHO genome-scale metabolic model which mechanistically characterizes cell culture behaviours. However, it is still challenging to quantify plausible intracellular fluxes and discern metabolic pathway usages considering various clonal traits and bioprocessing conditions. Thus, we newly incorporated enzyme kinetic information into the updated CHO genome-scale model (iCHO2291) and added enzyme capacity constraints within the flux balance analysis framework (ecFBA) to significantly reduce the flux variability in biologically meaningful manner, as such improving the accuracy of intracellular flux prediction. Interestingly, ecFBA could capture the overflow metabolism under the glucose excess condition where the usage of oxidative phosphorylation is limited by the enzyme capacity. In addition, its applicability was successfully demonstrated via a case study where the clone- and media-specific lactate metabolism was deciphered, suggesting that the lactate-pyruvate cycling could be beneficial for CHO cells to efficiently utilize the mitochondrial redox capacity. In summary, iCHO2296 with ecFBA can be used to confidently elucidate cell cultures and effectively identify key engineering targets, thus guiding bioprocess optimization and cell engineering efforts as a part of digital twin model for advanced biomanufacturing in future.


2018 ◽  
Author(s):  
Marzia Di Filippo ◽  
Raúl A. Ortiz-Merino ◽  
Chiara Damiani ◽  
Gianni Frascotti ◽  
Danilo Porro ◽  
...  

Genome-scale metabolic models are powerful tools to understand and engineer cellular systems facilitating their use as cell factories. This is especially true for microorganisms with known genome sequences from which nearly complete sets of enzymes and metabolic pathways are determined, or can be inferred. Yeasts are highly diverse eukaryotes whose metabolic traits have long been exploited in industry, and although many of their genome sequences are available, few genome-scale metabolic models have so far been produced. For the first time, we reconstructed the genome-scale metabolic model of the hybrid yeast Zygosaccharomyces parabailii, which is a member of the Z. bailii sensu lato clade notorious for stress-tolerance and therefore relevant to industry. The model comprises 3096 reactions, 2091 metabolites, and 2413 genes. Our own laboratory data were then used to establish a biomass synthesis reaction, and constrain the extracellular environment. Through constraint-based modeling, our model reproduces the co-consumption and catabolism of acetate and glucose posing it as a promising platform for understanding and exploiting the metabolic potential of Z. parabailii.


2021 ◽  
Author(s):  
Ioscani Jimenez del Val ◽  
Sarantos Kyriakopoulos ◽  
Simone Albrecht ◽  
Henning Stöckmann ◽  
Pauline M Rudd ◽  
...  

Metabolic modelling has emerged as a key tool for the characterisation of biopharmaceutical cell culture processes. Metabolic models have also been instrumental in identifying genetic engineering targets and developing feeding strategies that optimise the growth and productivity of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still present considerable challenges. Genome scale metabolic models (GeMs) of CHO cells are very large (>6000 reactions) and are, therefore, difficult to constrain to yield physiologically consistent flux distributions. The large scale of GeMs also makes interpretation of their outputs difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction network allows us to deploy multi-objective optimisation and ensure that the computed flux distributions are physiologically consistent. Furthermore, our CHOmpact model delivers enhanced interpretability of simulation results and has allowed us to identify the mechanisms governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, addresses key challenges of large-scale metabolic models and, with further development, will serve as a platform to develop dynamic metabolic models for the control and optimisation of biopharmaceutical cell culture processes.


2021 ◽  
Author(s):  
Fernando Cruz ◽  
João Capela ◽  
Eugénio C. Ferreira ◽  
Miguel Rocha ◽  
Oscar Dias

AbstractAs the reconstruction of Genome-Scale Metabolic Models becomes standard practice in systems biology, the number of organisms having at least one metabolic model at the genome-scale is peaking at an unprecedented scale. The automation of several laborious tasks, such as gap-finding and gap-filling, allowed to develop GSMMs for poorly described organisms. However, such models’ quality can be compromised by the automation of several steps, which may lead to erroneous phenotype simulations.The Biological networks constraint-based In Silico Optimization (BioISO) is a computational tool aimed at accelerating the reconstruction of Genome-Scale Metabolic Models. This tool facilitates the manual curation steps by reducing the large search spaces often met when debugging in silico biological models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis to evaluate and guide debugging of in silico phenotype simulations. The potential of BioISO to guide the debugging of model reconstructions was showcased using GSMMs available in literature and compared with the results of two other state-of-the-art gap-filling tools (Meneco and fastGapFill). Furthermore, BioISO was used as Meneco’s gap-finding algorithm to reduce the number of proposed solutions (reaction sets) for filling the gaps.BioISO was implemented as a webserver available at https://bioiso.bio.di.uminho.pt; and integrated into merlin as a plugin. BioISO’s implementation as a Python™ package can also be retrieved from https://github.com/BioSystemsUM/BioISO.


Author(s):  
Hamideh Fouladiha ◽  
Sayed-Amir Marashi ◽  
Shangzhong Li ◽  
Zerong Li ◽  
Helen O. Masson ◽  
...  

2020 ◽  
Author(s):  
Vetle Simensen ◽  
André Voigt ◽  
Eivind Almaas

AbstractThe long-chain, ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for humans and animals, including marine fish species. Presently, the primary source of these PUFAs is fish oils. As the global production of fish oils appears to be reaching its limits, alternative sources of high-quality ω-3 PUFAs is paramount to support the growing aquaculture industry. Thraustochytrids are a group of heterotrophic protists able to synthesize and accrue large amounts of essential ω-3 PUFAs, including EPA and DHA. Thus, the thraustochytrids are prime candidates to solve the increasing demand for ω-3 PUFAs using microbial cell factories. However, a systems-level understanding of their metabolic shift from cellular growth into lipid accumulation is, to a large extent, unclear. Here, we reconstructed a high-quality genome-scale metabolic model of the thraustochytrid Aurantiochytrium sp. T66 termed iVS1191. Through iterative rounds of model refinement and extensive manual curation, we significantly enhanced the metabolic scope and coverage of the reconstruction from that of previously published models, making considerable improvements with stoichiometric consistency, metabolic connectivity, and model annotations. We show that iVS1191 is highly consistent with experimental growth data, reproducing in vivo growth phenotypes as well as specific growth rates on minimal carbon media. The availability of iVS1191 provides a solid framework for further developing our understanding of T66’s metabolic properties, as well as exploring metabolic engineering and process-optimization strategies in silico for increased ω-3 PUFA production.


2021 ◽  
Author(s):  
Mahsa Sadat Razavi Borghei ◽  
Meysam Mobasheri ◽  
Tabassom Sobati

Abstract Propionibacterium is an anaerobic bacterium with a history of use in the production of Swiss cheese and, more recently, several industrial bioproducts. While the use of this strain for the production of organic acids and secondary metabolites has gained growing interest, the industrial application of the strain requires further improvement in the yield and productivity of the target products. Systems modeling and analysis of metabolic networks are widely leveraged to gain holistic insights into the metabolic features of biotechnologically important strains and to devise metabolic engineering and culture optimization strategies for economically viable bioprocess development. In the present study, a high-quality genome-scale metabolic model of P. freudenreichii ssp. freudenreichii strain DSM 20271 was developed based on the strain’s genome annotation and biochemical and physiological data. The model covers the functions of 23% of the strain’s ORFs and accounts for 711 metabolic reactions and 647 unique metabolites. Literature-based reconstruction of the central metabolism and rigorous refinement of annotation data for establishing gene-protein-reaction associations renders the model a curated omic-scale knowledge base of the organism. Validation of the model against experimental data indicates that the reconstruction can capture the key structural and functional features of P. freudenreichii metabolism, including the growth rate, the pattern of flux distribution, the strain’s aerotolerance behavior, and the change in the mode of metabolic activity during the transition from an anaerobic to an aerobic growth regime. The model also includes an accurately curated pathway of cobalamin biosynthesis, which was used to examine the capacity of the strain to produce vitamin B12 precursors. Constraint-based reconstruction and analysis of the P. freudenreichii metabolic network also provided novel insights into the complexity and robustness of P. freudenreichii energy metabolism. The developed reconstruction, hence, may be used as a platform for the development of P. freudenreichii-based microbial cell factories and bioprocesses.


2021 ◽  
Author(s):  
Francisco Zorrilla ◽  
Kiran R. Patil ◽  
Aleksej Zelezniak

AbstractAdvances in genome-resolved metagenomic analysis of complex microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts still tend to rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and inter-species diversity present in microbial communities. Here we present metaGEM (https://github.com/franciscozorrilla/metaGEM), an end-to-end highly scalable pipeline enabling metabolic modeling of multi-species communities directly from metagenomic samples. The pipeline automates all steps from the extraction of context-specific prokaryotic GEMs from metagenome assembled genomes to community level flux balance simulations. To demonstrate the capabilities of the metaGEM pipeline, we analyzed 483 samples spanning lab culture, human gut, plant associated, soil, and ocean metagenomes, to reconstruct over 14 000 prokaryotic GEMs. We show that GEMs reconstructed from metagenomes have fully represented metabolism comparable to the GEMs reconstructed from reference genomes. We further demonstrate that metagenomic GEMs capture intraspecies metabolic diversity by identifying the differences between pathogenicity levels of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, our pipeline enables simulation-ready metabolic model reconstruction directly from individual metagenomes, provides a resource of all reconstructed metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.


2021 ◽  
Author(s):  
Emanuel Cunha ◽  
Miguel Silva ◽  
Ines Chaves ◽  
Huseyin Demirci ◽  
Davide Lagoa ◽  
...  

AbstractIn the last decade, genome-scale metabolic models have been increasingly used to study plant metabolic behaviour at the tissue and multi-tissue level in different environmental conditions. Quercus suber (Q. suber), also known as the cork oak tree, is one of the most important forest communities of the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the Q. suber (iEC7871), the first of a woody plant. The metabolic model comprises 7871 genes, 6230 reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into the model to obtain tissue-specific models for the leaf, inner bark, and phellogen. Each tissue’s biomass composition was determined to improve model accuracy and merged into a diel multi-tissue metabolic model to predict interactions among the three tissues at the light and dark phases. The metabolic models were also used to analyze the pathways associated with the synthesis of suberin monomers. Nevertheless, the models developed in this work can provide insights about other aspects of the metabolism of Q. suber, such as its secondary metabolism and cork formation.


Sign in / Sign up

Export Citation Format

Share Document