scholarly journals Redundant and additive functions of the four Lef/Tcf transcription factors in lung epithelial progenitors

Author(s):  
Kamryn N. Gerner-Mauro ◽  
Haruhiko Akiyama ◽  
Jichao Chen

ABSTRACTIn multicellular organisms, paralogs from gene duplication survive purifying selection by evolving tissue-specific expression and function. Whether this genetic redundancy is also selected for within a single cell type is unclear for multi-member paralogs, as exemplified by the 4 obligatory Lef/Tcf transcription factors of canonical Wnt signaling, mainly due to the dauntingly complex genetics involved. Using the developing mouse lung as a model system, we generate 2 quadruple conditional knockouts and myriad triple and double combinations, and show that the 4 Lef/Tcf genes function redundantly in the presence of at least 2 Lef/Tcf paralogs, but additively upon losing additional paralogs to specify and maintain lung epithelial progenitors. Pre-lung-specification, pan-epithelial double knockouts have no lung phenotype, triple knockouts have varying phenotypes, including defective branching and tracheoesophageal fistulas, and the quadruple knockout barely forms a lung, resembling the Ctnnb1 mutant. Post-lung-specification deletion of all 4 Lef/Tcf genes leads to branching defects, downregulation of progenitor genes, premature alveolar differentiation, and derepression of gastrointestinal genes, again phenocopying the corresponding Ctnnb1 mutant. Our study supports a monotonic, positive signaling relationship between CTNNB1 and Lef/Tcf in lung epithelial progenitors and represents, to our knowledge, the first in vivo analysis of cell-type-specific genetic redundancy among the 4 Lef/Tcf paralogs.SIGNIFICANCE STATEMENTParalogs represent genetic redundancy and survive purifying selection by evolving overlapping and distinct functions. In multicellular organisms, such functional diversification can manifest as tissue and cell type specific expression, which masks possible selective pressure for genetic redundancy within a single cell type. Using in vivo genetic and genomic analyses, we show that although the 4 mammalian Lef/Tcf transcription factors have evolved organ-specific functions, they function additively and redundantly, depending on gene dosage, to promote lung epithelial progenitors and do so in a monotonic, positive manner with beta-Catenin in the canonical Wnt signaling pathway.

2020 ◽  
Vol 117 (22) ◽  
pp. 12182-12191 ◽  
Author(s):  
Kamryn N. Gerner-Mauro ◽  
Haruhiko Akiyama ◽  
Jichao Chen

In multicellular organisms, paralogs from gene duplication survive purifying selection by evolving tissue-specific expression and function. Whether this genetic redundancy is also selected for within a single cell type is unclear for multimember paralogs, as exemplified by the four obligatory Lef/Tcf transcription factors of canonical Wnt signaling, mainly due to the complex genetics involved. Using the developing mouse lung as a model system, we generate two quadruple conditional knockouts, four triple mutants, and various combinations of double mutants, showing that the four Lef/Tcf genes function redundantly in the presence of at least two Lef/Tcf paralogs, but additively upon losing additional paralogs to specify and maintain lung epithelial progenitors. Prelung-specification, pan-epithelial double knockouts have no lung phenotype; triple knockouts have varying phenotypes, including defective branching and tracheoesophageal fistulas; and the quadruple knockout barely forms a lung, resembling theCtnnb1mutant. Postlung-specification deletion of all four Lef/Tcf genes leads to branching defects, down-regulation of progenitor genes, premature alveolar differentiation, and derepression of gastrointestinal genes, again phenocopying the correspondingCtnnb1mutant. Our study supports a monotonic, positive signaling relationship between CTNNB1 and Lef/Tcf in lung epithelial progenitors as opposed to reported repressor functions of Lef/Tcf, and represents a thorough in vivo analysis of cell-type-specific genetic redundancy among the four Lef/Tcf paralogs.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev187922 ◽  
Author(s):  
Candace S. Y. Chan ◽  
Nicolas Lonfat ◽  
Rong Zhao ◽  
Alexander E. Davis ◽  
Liang Li ◽  
...  

ABSTRACTTranscription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.


Author(s):  
Candace Chan ◽  
Nicolas Lonfat ◽  
Rong Zhao ◽  
Alexander Davis ◽  
Liang Li ◽  
...  

AbstractTranscription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is an advantageous strategy. However, the mechanisms that control the activation of TFs in different cell types and at different stages of development remain unclear. The neural retina serves as a model of the development of a complex tissue. We used this system to analyze how expression of the homeobox TF, Orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during retinogenesis. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. These include mature bipolar interneurons, photoreceptors, and retinal progenitor/precursor cells. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages, as revealed by ATAC-seq and DNase-seq analyses. We conclude that retinal cells utilize a cohort of TFs with different expression patterns, and multiple CRMs with different chromatin configurations, to precisely regulate the expression of Otx2 in a cell type- and stage-specific manner in the retina.


2021 ◽  
Author(s):  
David D Lowe ◽  
Denise Montell

The eukaryotic initiation factor EIF2A is an unconventional translation factor required for initiation of protein synthesis from non-AUG codons from a variety of transcripts, including oncogenes and stress related genes in mammalian cells. Its function in multicellular organisms has not been reported. Here, we identify and characterize mutant alleles of the CG7414 gene, which encodes the Drosophila EIF2A ortholog. We identified that CG7414 undergoes sex-specific splicing that regulates its male-specific expression. We characterized a Mi{Mic} transposon insertion that disrupts the coding regions of all predicted isoforms and is a genetic null allele, and a PBac transposon insertion into an intron, which is a hypomorph. The Mi{Mic} allele is homozygous lethal, while the viable progeny from the hypomorphic PiggyBac allele are male sterile and female fertile. In dEIF2A mutant flies, sperm failed to individualize due to defects in F-actin cones and failure to form and maintain cystic bulges, ultimately leading to sterility. These results demonstrate that EIF2A is essential in a multicellular organism, both for normal development and spermatogenesis, and provide an entree into the elucidation of the role of EIF2A and unconventional translation in vivo.


1994 ◽  
Vol 14 (2) ◽  
pp. 871-879
Author(s):  
A Sharma ◽  
R Stein

The insulin gene is expressed exclusively in pancreatic islet beta cells. The principal regulator of insulin gene transcription in the islet is the concentration of circulating glucose. Previous studies have demonstrated that transcription is regulated by the binding of trans-acting factors to specific cis-acting sequences within the 5'-flanking region of the insulin gene. To identify the cis-acting control elements within the rat insulin II gene that are responsible for regulating glucose-stimulated expression in the beta cell, we analyzed the effect of glucose on the in vivo expression of a series of transfected 5'-flanking deletion mutant constructs. We demonstrate that glucose-induced transcription of the rat insulin II gene is mediated by sequences located between -126 and -91 bp relative to the transcription start site. This region contains two cis-acting elements that are essential for directing pancreatic beta-cell-type-specific expression of the rat insulin II gene, the insulin control element (ICE; -100 to -91 bp) and RIPE3b1 (-115 to -107 bp). The gel mobility shift assay was used to determine whether the formation of the ICE- and RIPE3b1-specific factor-DNA element complexes were affected in glucose-treated beta-cell extracts. We found that RIPE3b1 binding activity was selectively induced by about eightfold. In contrast, binding to other insulin cis-acting element sequences like the ICE and RIPE3a2 (-108 to -99 bp) were unaffected by these conditions. The RIPE3b1 binding complex was shown to be distinct from the glucose-inducible factor that binds to an element located between -227 to -206 bp of the human and rat insulin I genes (D. Melloul, Y. Ben-Neriah, and E. Cerasi, Proc. Natl. Acad. Sci. USA 90:3865-3869, 1993). We have also shown that mannose, a sugar that can be metabolized by the beta cell, mimics the effects of glucose in the in vivo transfection assays and the in vitro RIPE3b1 binding assays. These results suggested that the RIPE3b1 transcription factor is a primary regulator of glucose-mediated transcription of the insulin gene. However, we found that mutations in either the ICE or the RIPE3b1 element reduced glucose-responsive expression from transfected 5'-flanking rat insulin II gene constructs. We therefore conclude that glucose-regulated transcription of the insulin gene is mediated by cis-acting elements required for beta-cell-type-specific expression.


2001 ◽  
Vol 21 (6) ◽  
pp. 2144-2153 ◽  
Author(s):  
Nabeel Bardeesy ◽  
Boris C. Bastian ◽  
Aram Hezel ◽  
Dan Pinkel ◽  
Ronald A. DePinho ◽  
...  

ABSTRACT The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a Δ2/3 deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RASV12G, Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate withp53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising inINK4a Δ2/3−/− mice, and whether tumor-associated mutations emerge in the p16INK4a-RB pathway in such melanomas. Here, we report that p53inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on theINK4a Δ2/3 null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G1/S transition, including c-Myc, cyclin D1, cdc25a, and p21CIP1. Consistent with the profile of c-Myc dysregulation, the reintroduction of p16INK4a profoundly reduced the growth of Tyr-RASINK4a Δ2/3−/− tumor cells but had no effect on tumor cells derived from Tyr-RAS p53 −/−melanomas. Together, these data validate a role for p53inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.


2021 ◽  
Author(s):  
Sruti Rayaprolu ◽  
Sara Bitarafan ◽  
Ranjita Betarbet ◽  
Sydney N Sunna ◽  
Lihong Cheng ◽  
...  

Isolation and proteomic profiling of brain cell types, particularly neurons, pose several technical challenges which limit our ability to resolve distinct cellular phenotypes in neurological diseases. Therefore, we generated a novel mouse line that enables cell type-specific expression of a biotin ligase, TurboID, via Cre-lox strategy for in vivo proximity-dependent biotinylation of proteins. Using adenoviral-based and transgenic approaches, we show striking protein biotinylation in neuronal cell bodies and axons throughout the mouse brain. We quantified more than 2,000 neuron-derived proteins following enrichment that mapped to numerous subcellular compartments. Synaptic, transmembrane transporters, ion channel subunits, and disease-relevant druggable targets were among the most significantly enriched proteins. Remarkably, we resolved brain region-specific proteomic profiles of Camk2a neurons with distinct functional molecular signatures and disease associations that may underlie regional neuronal vulnerability. Leveraging the neuronal specificity of this in vivo biotinylation strategy, we used an antibody-based approach to uncover regionally unique patterns of neuron-derived signaling phospho-proteins and cytokines, particularly in the cortex and cerebellum. Our work provides a proteomic framework to investigate cell type-specific mechanisms driving physiological and pathological states of the brain as well as complex tissues beyond the brain.


1986 ◽  
Vol 6 (4) ◽  
pp. 969-975
Author(s):  
G J Darlington ◽  
C C Tsai ◽  
L C Samuelson ◽  
D L Gumucio ◽  
M H Meisler

The tissue-specific expression of two types of mouse amylase genes does not overlap in vivo; the Amy-1 locus is transcribed in the parotid gland and the liver, while expression of Amy-2 is limited to the pancreas. We identified a mouse hepatoma cell line, Hepa 1-6, in which both amylase genes can be simultaneously expressed. Amy-1 is constitutively active in these cells and is inducible by dexamethasone at the level of mRNA. We demonstrated that the liver-specific promoter of Amy-1 is utilized by the dexamethasone-treated hepatoma cells, and that glucocorticoid consensus sequences are present upstream of this promoter. Amy-2 is not detectable constitutively, but can be activated if the cells are cultured in serum-free medium containing dexamethasone. Expression of Amy-2 in a nonpancreatic cell type has not previously been observed. We speculate that induction of Amy-1 and activation of Amy-2 may involve different regulatory mechanisms. Hepa 1-6 cells provide an experimental system for molecular analysis of these events.


Sign in / Sign up

Export Citation Format

Share Document