scholarly journals Estimating maximum sustainable yield of snow crab (Chionoecetes opilio) off Tohoku Japan via a state-space assessment model with time-varying natural mortality

2020 ◽  
Author(s):  
Yasutoki Shibata ◽  
Jiro Nagao ◽  
Yoji Narimatsu ◽  
Eisuke Morikawa ◽  
Yuto Suzuki ◽  
...  

AbstractYield from fisheries is a tangible benefit of ecosystem services and sustaining or restoring a fish stock level to achieve a maximum sustainable yield (MSY). Snow crab (Chionoecetes opilio) off Tohoku has been managed by a total allowable catch since 1996, although their abundance has not increased even after 2011, when fishing pressure rapidly decreased because of the Great East Japan Earthquake. This implies that their biological characteristics, such as recruits, natural mortality coefficient (M), and terminal molting probabilities (p), might have changed. We developed “just another state-space stock assessment model (JASAM)” to estimate the MSY of the snow crab off Tohoku, Japan, considering interannual variations in M and p. The multi-model inference revealed that M increased from 0.2 in 1997 to 0.59 in 2018, although it was not different among the instars, sex, nor terminal molt of crabs. The parameter p also increased by 1.34–2.46 times depending on the instar growth stages from 1997 to 2018. We estimated the MSYs in three scenarios, which drastically changed if M and p were set as they were in the past or at the current values estimated from this study. This result indicated that the MSY of snow crab would also be time-varying based on their time-varying biological characteristics.

1978 ◽  
Vol 35 (9) ◽  
pp. 1249-1261 ◽  
Author(s):  
G. H. Winters

From recent and historical data the natural mortality rate of adult harp seals (Pagophilus groenlandicus) is estimated to be 0.10 which is within the range of previous estimates (0.08–0.11). New estimates of bedlamer and 0-group natural mortality rates were not significantly different from those of adult seals. Pup production estimates from survival indices agreed well with those from sequential population analyses and indicated a decline from about 350 000 animals in the early 1950s to about 310 000 animals in the early 1970s. Over the same period the 1+ population size declined from 2.5 to 1.1 million animals but has been increasing at the rate of 3%/yr since the introduction of quotas in 1972. The relative contribution of the "Front" production to total ("Front" plus Gulf) production during the past decade has fluctuated from 49 to 87%, the average of 64% being very similar to the 61% obtained previously. These fluctuations suggest some interchange between "Front" and Gulf adults and it is concluded that homing in the breeding areas is a facultative rather than obligatory aspect of seal behavior. Thus the heavier exploitation of the "Front" production is probably sufficiently diffused into the total population to avoid serious effects on "Front" production. The maximum sustainable yield of Northwest Atlantic seals harvested according to recent patterns is estimated to be 290 000 animals (80% pups) from a 1+ population size of 1.8 million animals producing 460 000 pups annually. The sustainable yield at present levels of pup production (335 000 animals) is calculated to be 220 000 animals which is substantially above the present TAC of 180 000 animals and coincides with present harvesting strategies designed to enable the seal hunt to increase slowly towards the MSY level. Key words: mortality, production, sustainable yield, population dynamics, marine mammal


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 261-279 ◽  
Author(s):  
A. Christensen ◽  
M. Butenschön ◽  
Z. Gürkan ◽  
I. J. Allen

Abstract. First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical–biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2–6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.


1998 ◽  
Vol 55 (8) ◽  
pp. 1971-1982 ◽  
Author(s):  
Mikko Heino

Mortality caused by harvesting can select for life history changes in the harvested stock. Should this possibility be taken into account in the management of renewable resources? I compare the performance of different harvest strategies when evolutionary change is accounted for with the help of an age-structured population dynamics model. Assuming that age of first reproduction is the only evolving trait, harvesting of only mature individuals selects for delayed maturation and results in increased sustainable yields. Unselective harvesting of both mature and immature fish selects for earlier maturation which causes the sustainable yield to decrease. Constant stock size and constant harvest rate strategies perform equally well in terms of maximum sustainable yield, both before and after evolutionary change. The maximum sustainable yield for fixed-quota strategies is lower. All those strategies have similar evolutionary consequences given a similar average harvest rate. Coevolutionary dynamics between fish stock and the stock manager indicate that the evolutionary benefits of selective harvesting are attainable without incurring yield losses in the near future.


2018 ◽  
Vol 75 (5) ◽  
pp. 691-703 ◽  
Author(s):  
Timothy J. Miller ◽  
Saang-Yoon Hyun

State-space models explicitly separate uncertainty associated with unobserved, time-varying parameters from that which arises from sampling the population. The statistical aspects of formal state-space models are appealing and these models are becoming more widely used for assessments. However, treating natural mortality as known and constant across ages continues to be common practice. We developed a state-space, age-structured assessment model that allowed different assumptions for natural mortality and the degree of temporal stochasticity in abundance. We fit a suite of models where natural mortality was either age-invariant or an allometric function of mass and interannual transitions of abundance were deterministic or stochastic to observations on Gulf of Maine – Georges Bank Acadian redfish (Sebastes fasciatus). We found that allowing stochasticity in the interannual transition in abundance was important and estimating age-invariant natural mortality was sufficient. A simulation study showed low bias in annual biomass estimation when the estimation and simulation model matched and the Akaike imformation criterion accurately measured relative model performance, but it was important to allow simulated data sets to include the stochasticity in interannual transitions of abundance-at-age.


2019 ◽  
Vol 77 (3) ◽  
pp. 930-941 ◽  
Author(s):  
Cecilia A O’Leary ◽  
James T Thorson ◽  
Timothy J Miller ◽  
Janet A Nye

Abstract Fisheries managers use biological reference points (BRPs) as targets or limits on fishing and biomass to maintain productive levels of fish stock biomass. There are multiple ways to calculate BRPs when biological parameters are time varying. Using summer flounder (Paralichthys dentatus) as a case study, we investigated time-varying approaches in concert with climate-linked population models to understand the impact of environmentally driven variability in natural mortality, recruitment, and size-at-age on two commonly used BRPs [B0(t) and F35%(t)]. We used the following two approaches to calculate time-varying BRPs: dynamic-BRP and moving-average-BRP. We quantified the variability and uncertainty of different climate dependencies and estimation approaches, attributed BRP variation to variation in life-history processes, and evaluated how using different approaches impacts estimates of stock status. Results indicate that the dynamic-BRP approach using the climate-linked natural mortality model produced the least variable reference points compared to others calculated. Summer flounder stock status depended on the estimation approach and climate model used. These results emphasize that understanding climate dependencies is important for summer flounder reference points and perhaps other species, and careful consideration is warranted when considering what time-varying approach to use, ideally based upon simulation studies within a proposed set of management procedures.


2013 ◽  
Vol 70 (12) ◽  
pp. 1699-1708 ◽  
Author(s):  
David A. Somerton ◽  
Kenneth L. Weinberg ◽  
Scott E. Goodman

Catchability of the eastern Bering Sea (EBS) bottom trawl survey for snow crab (Chionoecetes opilio) was estimated from experimental data to provide a constraint on the survey catchability parameters in the stock assessment model. The experiment utilized a second fishing vessel to conduct side-by-side trawling with each of two survey vessels at 92 stations using an experimental trawl assumed to capture all crabs in its path. Trawl efficiency, or the captured proportion of crabs in the trawl path, was estimated for the 83-112 Eastern otter trawl from experimental data using a nonparametric smooth function of carapace width, sediment size, and depth. Survey catchability was then estimated as the catch-weighted average of the predicted trawl efficiency at all 275 survey stations where snow crabs were captured. The fitted model indicated that trawl selectivity was greater in sand than mud and greater in shallow water than deep. At a carapace widths >95 mm, the minimum commercial size limit, the estimated survey catchability of males is considerably less than previously reported.


1982 ◽  
Vol 39 (7) ◽  
pp. 1054-1058 ◽  
Author(s):  
R. B. Deriso

Fishing mortality constraints are derived for fishes harvested at the maximum sustainable yield (MSY) determined by a delay-difference population model. Those constraints depend upon rates of natural mortality and growth as well as a simple constraint placed on abundance of the exploited population. The results are generalized for a wider class of population models where it is shown that MSY fishing mortality is constrained often to be less than the fishing mortality which maximizes yield per recruit. Fishing mortality rates are lower in the delay difference model in comparison to MSY fishing rates in the logistic model, when a quadratic spawner–recruit curve is applied.Key words: delay-difference model, logistic model, fishing mortality, maximum sustainable yield, yield per recruit


2016 ◽  
Vol 73 (2) ◽  
pp. 296-308 ◽  
Author(s):  
Noel G. Cadigan

A state-space assessment model for the northern cod (Gadus morhua) stock off southern Labrador and eastern Newfoundland is developed here. The model utilizes information from offshore trawl surveys, inshore acoustic surveys, fishery catch age compositions, partial fishery landings, and tagging. This is done using an approach that avoids the use of subjective data-weighting. Estimates of fishing mortality rates (F) are usually conditional on assumptions about natural mortality rates (M) in stock assessment models. However, by integrating much of the information on northern cod, it is possible to estimate F and M separately. It is also possible to estimate a change in the offshore survey catchability by including inshore acoustic biomass estimates. The proposed model also accounts for biased total catch statistics, which is a common problem in stock assessments. The main goal of the model is to provide realistic projections of the impacts of various levels of future fishery catches on the recovery of this stock. The projections incorporate uncertainty about M and catch. This is vital information for successful future fisheries. The model has been developed for the specific data sources available for northern cod, but it could be adapted to other stocks with similar data sources.


Sign in / Sign up

Export Citation Format

Share Document