scholarly journals Towards an integrated forecasting system for fisheries on habitat-bound stocks

Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 261-279 ◽  
Author(s):  
A. Christensen ◽  
M. Butenschön ◽  
Z. Gürkan ◽  
I. J. Allen

Abstract. First results of a coupled modelling and forecasting system for fisheries on habitat-bound stocks are being presented. The system consists currently of three mathematically, fundamentally different model subsystems coupled offline: POLCOMS providing the physical environment implemented in the domain of the north-west European shelf, the SPAM model which describes sandeel stocks in the North Sea, and the third component, the SLAM model, which connects POLCOMS and SPAM by computing the physical–biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the basis of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin-scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeel stocks are currently exploited close to the maximum sustainable yield, even though periodic overfishing seems to have occurred, but large uncertainty is associated with determining stock maximum sustainable yield due to stock inherent dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2–6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.

2012 ◽  
Vol 9 (2) ◽  
pp. 1437-1479 ◽  
Author(s):  
A. Christensen ◽  
M. Butenschön ◽  
Z. Gürkan ◽  
I. J. Allen

Abstract. First results of a coupled modeling and forecasting system for the pelagic fisheries are being presented. The system consists currently of three mathematically fundamentally different model subsystems: POLCOMS-ERSEM providing the physical-biogeochemical environment implemented in the domain of the North-West European shelf and the SPAM model which describes sandeel stocks in the North Sea. The third component, the SLAM model, connects POLCOMS-ERSEM and SPAM by computing the physical-biological interaction. Our major experience by the coupling model subsystems is that well-defined and generic model interfaces are very important for a successful and extendable coupled model framework. The integrated approach, simulating ecosystem dynamics from physics to fish, allows for analysis of the pathways in the ecosystem to investigate the propagation of changes in the ocean climate and lower trophic levels to quantify the impacts on the higher trophic level, in this case the sandeel population, demonstrated here on the base of hindcast data. The coupled forecasting system is tested for some typical scientific questions appearing in spatial fish stock management and marine spatial planning, including determination of local and basin scale maximum sustainable yield, stock connectivity and source/sink structure. Our presented simulations indicate that sandeels stocks are currently exploited close to the maximum sustainable yield, but large uncertainty is associated with determining stock maximum sustainable yield due to stock eigen dynamics and climatic variability. Our statistical ensemble simulations indicates that the predictive horizon set by climate interannual variability is 2–6 yr, after which only an asymptotic probability distribution of stock properties, like biomass, are predictable.


1998 ◽  
Vol 55 (8) ◽  
pp. 1971-1982 ◽  
Author(s):  
Mikko Heino

Mortality caused by harvesting can select for life history changes in the harvested stock. Should this possibility be taken into account in the management of renewable resources? I compare the performance of different harvest strategies when evolutionary change is accounted for with the help of an age-structured population dynamics model. Assuming that age of first reproduction is the only evolving trait, harvesting of only mature individuals selects for delayed maturation and results in increased sustainable yields. Unselective harvesting of both mature and immature fish selects for earlier maturation which causes the sustainable yield to decrease. Constant stock size and constant harvest rate strategies perform equally well in terms of maximum sustainable yield, both before and after evolutionary change. The maximum sustainable yield for fixed-quota strategies is lower. All those strategies have similar evolutionary consequences given a similar average harvest rate. Coevolutionary dynamics between fish stock and the stock manager indicate that the evolutionary benefits of selective harvesting are attainable without incurring yield losses in the near future.


2015 ◽  
Vol 21 (1) ◽  
pp. 45 ◽  
Author(s):  
Purwanto Purwanto

Malacca Strait is one of the main fishing areas for demersal fishery in Indonesia. To support the management of that fishery, an assessment of the demersal fish stock was conducted. This study estimated that the maximum sustainable yield and the optimal catch per unit effortof demersal fishery in the Malacca Strait were about 106.8 thousand tons/year and 28.5 tons per unit of Danish seine, respectively, resulting from the operation of 3,752 Danish seines. Unfortunately, fishing effort was higher than its optimum level and the fish stock was over-exploited since 2003. To recover the demersal fish stock to its optimum level and to ensure the optimal fish production from demersal fishery in the Malacca Strait, it was necessary to reduce fishing effort at about 67% from its level in 2011.


2014 ◽  
Vol 71 (2) ◽  
pp. 153-156 ◽  
Author(s):  
Michael M. Sissenwine ◽  
Pamela M. Mace ◽  
Hans J. Lassen

Abstract Sissenwine, M. M., Mace P. M., and Lassen, H. J. 2014. Preventing Overfishing: Evolving Approaches and Emerging Challenges. – ICES Journal of Marine Science, 71: 153–156. The evolution of fishery management frameworks to prevent overfishing is the theme of the eight papers that follow in this issue of the ICES Journal of Marine Science. The current paper describes common elements of the frameworks. All the frameworks are based on the maximum sustainable yield concept. Frameworks to prevent overfishing have evolved to be increasingly prescriptive. This evolution probably reflects past abuse of flexibility which led to overfishing. The outcome has been a decline in the proportion of stocks suffering from overfishing. However, loss of flexibility may result in large foregone yields from multispecies fisheries, create a mis-match between the expectations for scientific information and the realities of scientific uncertainty, and fail to recognize ecosystem dynamics.


2019 ◽  
Vol 3 (1) ◽  
pp. 210-222
Author(s):  
Alexander Ryzhenkov

The study applies the system dynamics method in upgrading the World Bank’s global marine fisheries models in the interest of achieving the UN goals of sustainable development. The key variables are a global marine fish stock, its natural growth, as well as the fisheries’ effort and catch. The equations for the reproduction of the fish stock in the regimes of maximum sustainable yield, overfishing or undercatch are derived. Determined are collapse time frames in result of typical overfishing varieties. A new positive feedback loop has been proposed in regulating global marine fish stock to ensure maximum sustainable yield asymptotically.


2016 ◽  
Vol 9 (4) ◽  
pp. 1293-1339 ◽  
Author(s):  
Momme Butenschön ◽  
James Clark ◽  
John N. Aldridge ◽  
Julian Icarus Allen ◽  
Yuri Artioli ◽  
...  

Abstract. The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.


2016 ◽  
Vol 74 (2) ◽  
pp. 566-575 ◽  
Author(s):  
Clara Ulrich ◽  
Youen Vermard ◽  
Paul J. Dolder ◽  
Thomas Brunel ◽  
Ernesto Jardim ◽  
...  

Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example of an issue that is generic across most demersal fisheries worldwide, with the diversity of species and fisheries inducing numerous biological and technical interactions. Building on a rich knowledge base for the understanding and quantification of these interactions, new approaches have emerged. Recent paths towards operationalizing MSY at the regional scale have suggested the expansion of the concept into a desirable area of “pretty good yield”, implemented through a range around FMSY that would allow for more flexibility in management targets. This article investigates the potential of FMSY ranges to combine long-term single-stock targets with flexible, short-term, mixed-fisheries management requirements applied to the main North Sea demersal stocks. It is shown that sustained fishing at the upper bound of the range may lead to unacceptable risks when technical interactions occur. An objective method is suggested that provides an optimal set of fishing mortality within the range, minimizing the risk of total allowable catch mismatches among stocks captured within mixed fisheries, and addressing explicitly the trade-offs between the most and least productive stocks.


2015 ◽  
Vol 8 (8) ◽  
pp. 7063-7187 ◽  
Author(s):  
M. Butenschön ◽  
J. Clark ◽  
J. N. Aldridge ◽  
J. I. Allen ◽  
Y. Artioli ◽  
...  

Abstract. The ERSEM model is one of the most established ecosystem models for the lower trophic levels of the marine food-web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North-Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic part of the marine ecosystem, including the microbial food-web, the carbonate system and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case-studies of mesocosm type simulations, water column implementations and a brief example of a full-scale application for the North-West European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.


2020 ◽  
Vol 9 (1) ◽  
pp. 15-17
Author(s):  
Ernesto A Chávez

A brief review of the concept of Maximum Sustainable Yield (MSY) used in fisheries management is discussed. The convenience of assessing the exploited stocks with the aid of simulation is advised, because implies the possibility to analyze the age structure of the fishery in more detail, as compared to the traditional methods of fish stock assessment. Emphasis is given to the use of the MSY as limit reference point because as long as the Fishing Mortality or fishing effort required for that point is kept at lower values, the fishery will have a good chance to be sustainable. A mention of the Maximum Economic Yield is made, proposing its use a target for the management, because it is reached in general with lower F values then that for the MSY, and this way keeping the fishery in a healthy condition.


2020 ◽  
Author(s):  
Yasutoki Shibata ◽  
Jiro Nagao ◽  
Yoji Narimatsu ◽  
Eisuke Morikawa ◽  
Yuto Suzuki ◽  
...  

AbstractYield from fisheries is a tangible benefit of ecosystem services and sustaining or restoring a fish stock level to achieve a maximum sustainable yield (MSY). Snow crab (Chionoecetes opilio) off Tohoku has been managed by a total allowable catch since 1996, although their abundance has not increased even after 2011, when fishing pressure rapidly decreased because of the Great East Japan Earthquake. This implies that their biological characteristics, such as recruits, natural mortality coefficient (M), and terminal molting probabilities (p), might have changed. We developed “just another state-space stock assessment model (JASAM)” to estimate the MSY of the snow crab off Tohoku, Japan, considering interannual variations in M and p. The multi-model inference revealed that M increased from 0.2 in 1997 to 0.59 in 2018, although it was not different among the instars, sex, nor terminal molt of crabs. The parameter p also increased by 1.34–2.46 times depending on the instar growth stages from 1997 to 2018. We estimated the MSYs in three scenarios, which drastically changed if M and p were set as they were in the past or at the current values estimated from this study. This result indicated that the MSY of snow crab would also be time-varying based on their time-varying biological characteristics.


Sign in / Sign up

Export Citation Format

Share Document