scholarly journals Long-range Temporal Correlations in the Broadband Resting state Activity of the Human Brain revealed by Neuronal Avalanches

2020 ◽  
Author(s):  
Fabrizio Lombardi ◽  
Oren Shriki ◽  
Hans J. Herrmann ◽  
Lucilla de Arcangelis

AbstractResting-state brain activity is characterized by the presence of neuronal avalanches showing absence of characteristic size. Such evidence has been interpreted in the context of criticality and associated with the normal functioning of the brain. At criticality, a crucial role is played by long-range power-law correlations. Thus, to verify the hypothesis that the brain operates close to a critical point and consequently assess deviations from criticality for diagnostic purposes, it is of primary importance to robustly and reliably characterize correlations in resting-state brain activity. Recent works focused on the analysis of narrow band electroencephalography (EEG) and magnetoencephalography (MEG) signal amplitude envelope, showing evidence of long-range temporal correlations (LRTC) in neural oscillations. However, this approach is not suitable for assessing long-range correlations in broadband resting-state cortical signals. To overcome such limitation, here we propose to characterize the correlations in the broadband brain activity through the lens of neuronal avalanches. To this end, we consider resting-state EEG and long-term MEG recordings, extract the corresponding neuronal avalanche sequences, and study their temporal correlations. We demonstrate that the broadband resting-state brain activity consistently exhibits long-range power-law correlations in both EEG and MEG recordings, with similar values of the scaling exponents. Importantly, although we observe that avalanche size distribution depends on scale parameters, scaling exponents characterizing long-range correlations are quite robust. In particular, they are independent of the temporal binning (scale of analysis), indicating that our analysis captures intrinsic characteristics of the underlying dynamics. Because neuronal avalanches constitute a fundamental feature of neural systems with universal characteristics, the proposed approach may serve as a general, systems- and experiment-independent procedure to infer the existence of underlying long-range correlations in extended neural systems, and identify pathological behaviors in the complex spatio-temporal interplay of cortical rhythms.

2011 ◽  
Vol 10 (02) ◽  
pp. 189-206 ◽  
Author(s):  
AIJING LIN ◽  
PENGJIAN SHANG ◽  
HUI MA

The Detrended Fluctuation Analysis (DFA) and its extensions (MF-DFA) have been proposed as robust techniques to determine possible long-range correlations in self-affine signals. However, many studies have reported the susceptibility of DFA to trends which give rise to spurious crossovers and prevent reliable estimations of the scaling exponents. Lately, several modifications of the DFA method have been reported with many different techniques for eliminating the monotonous and periodic trends. In this study, a smoothing algorithm based on the Orthogonal V-system (OVS) is proposed to minimize the effect of power-law trends, periodic trends, assembled trends and piecewise function trends. The effectiveness of the new method is demonstrated on monofractal data and multifractal data corrupted with different trends.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 286
Author(s):  
Soheil Keshmiri

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.


2015 ◽  
Vol 6 ◽  
Author(s):  
Maria Botcharova ◽  
Luc Berthouze ◽  
Matthew J. Brookes ◽  
Gareth R. Barnes ◽  
Simon F. Farmer

Author(s):  
Toshiki Kusano ◽  
Hiroki Kurashige ◽  
Isao Nambu ◽  
Yoshiya Moriguchi ◽  
Takashi Hanakawa ◽  
...  

AbstractSeveral functional magnetic resonance imaging (fMRI) studies have demonstrated that resting-state brain activity consists of multiple components, each corresponding to the spatial pattern of brain activity induced by performing a task. Especially in a movement task, such components have been shown to correspond to the brain activity pattern of the relevant anatomical region, meaning that the voxels of pattern that are cooperatively activated while using a body part (e.g., foot, hand, and tongue) also behave cooperatively in the resting state. However, it is unclear whether the components involved in resting-state brain activity correspond to those induced by the movement of discrete body parts. To address this issue, in the present study, we focused on wrist and finger movements in the hand, and a cross-decoding technique trained to discriminate between the multi-voxel patterns induced by wrist and finger movement was applied to the resting-state fMRI. We found that the multi-voxel pattern in resting-state brain activity corresponds to either wrist or finger movements in the motor-related areas of each hemisphere of the cerebrum and cerebellum. These results suggest that resting-state brain activity in the motor-related areas consists of the components corresponding to the elementary movements of individual body parts. Therefore, the resting-state brain activity possibly has a finer structure than considered previously.


2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2020 ◽  
Vol 225 (3) ◽  
pp. 1169-1183 ◽  
Author(s):  
Mostafa Jannesari ◽  
Alireza Saeedi ◽  
Marzieh Zare ◽  
Silvia Ortiz-Mantilla ◽  
Dietmar Plenz ◽  
...  

2017 ◽  
Vol 7 (5) ◽  
pp. e00686 ◽  
Author(s):  
Michela Balconi ◽  
Maria E. Vanutelli ◽  
Elisabetta Grippa

Sign in / Sign up

Export Citation Format

Share Document