scholarly journals Golgi-localized exo-β1,3-galactosidases involved in AGP modification and root cell expansion in Arabidopsis

2020 ◽  
Author(s):  
Pieter Nibbering ◽  
Bent L. Petersen ◽  
Mohammed Saddik Motawia ◽  
Bodil Jørgensen ◽  
Peter Ulvskov ◽  
...  

AbstractPlant arabinogalactan proteins (AGPs) are a diverse group of cell surface- and wall-associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships between their glycosylation, processing, and functionality are poorly understood. Here we report the identification and functional characterization of two Golgi-localized exo-β-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana. GH43 loss of function mutants exhibit root cell expansion defects in sugar-containing growth media. This root phenotype is associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Recombinant GH43 characterization showed that the exo-β-1,3-galactosidase activity of GH43s is hindered by β-1,6 branches on β-1,3-galactans. In line with this steric hindrance, the recombinant GH43s did not release galactose from cell wall extracted glycoproteins or AGP rich gum arabic. These results show that Arabidopsis GH43s are involved in AGP glycan biosynthesis in the Golgi, and suggest their exo-β-1,3-galactosidase activity influences AGP and cell wall matrix interactions, thereby adjusting cell wall extensibility.

2020 ◽  
Vol 295 (31) ◽  
pp. 10581-10592 ◽  
Author(s):  
Pieter Nibbering ◽  
Bent L. Petersen ◽  
Mohammed Saddik Motawia ◽  
Bodil Jørgensen ◽  
Peter Ulvskov ◽  
...  

Plant arabinogalactan proteins (AGPs) are a diverse group of cell surface– and wall–associated glycoproteins. Functionally important AGP glycans are synthesized in the Golgi apparatus, but the relationships among their glycosylation levels, processing, and functionalities are poorly understood. Here, we report the identification and functional characterization of two Golgi-localized exo-β-1,3-galactosidases from the glycosyl hydrolase 43 (GH43) family in Arabidopsis thaliana. GH43 loss-of-function mutants exhibited root cell expansion defects in sugar-containing growth media. This root phenotype was associated with an increase in the extent of AGP cell wall association, as demonstrated by Yariv phenylglycoside dye quantification and comprehensive microarray polymer profiling of sequentially extracted cell walls. Characterization of recombinant GH43 variants revealed that the exo-β-1,3-galactosidase activity of GH43 enzymes is hindered by β-1,6 branches on β-1,3-galactans. In line with this steric hindrance, the recombinant GH43 variants did not release galactose from cell wall–extracted glycoproteins or AGP-rich gum arabic. These results indicate that the lack of exo-β-1,3-galactosidase activity alters cell wall extensibility in roots, a phenotype that could be explained by the involvement of galactosidases in AGP glycan biosynthesis.


2018 ◽  
Vol 60 (2) ◽  
pp. 285-302 ◽  
Author(s):  
Peipei Wu ◽  
Mingsheng Peng ◽  
Zhigang Li ◽  
Ning Yuan ◽  
Qian Hu ◽  
...  

Abstract Plant organ development to a specific size and shape is controlled by cell proliferation and cell expansion. Here, we identify a novel Myb-like Arabidopsis gene, Development Related Myb-like1 (DRMY1), which controls cell expansion in both vegetative and reproductive organs. DRMY1 is strongly expressed in developing organs and its expression is reduced by ethylene while it is induced by ABA. DRMY1 has a Myb-like DNA-binding domain, which is predominantly localized in the nucleus and does not exhibit transcriptional activation activity. The loss-of-function T-DNA insertion mutant drmy1 shows reduced organ growth and cell expansion, which is associated with changes in the cell wall matrix polysaccharides. Interestingly, overexpression of DRMY1 in Arabidopsis does not lead to enhanced organ growth. Expression of genes involved in cell wall biosynthesis/remodeling, ribosome biogenesis and in ethylene and ABA signaling pathways is changed with the deficiency of DRMY1. Our results suggest that DRMY1 plays an essential role in organ development by regulating cell expansion either directly by affecting cell wall architecture and/or cytoplasmic growth or indirectly through the ethylene and/or ABA signaling pathways.


2017 ◽  
Vol 114 (24) ◽  
pp. E4884-E4893 ◽  
Author(s):  
Elke Barbez ◽  
Kai Dünser ◽  
Angelika Gaidora ◽  
Thomas Lendl ◽  
Wolfgang Busch

Plant cells are embedded within cell walls, which provide structural integrity, but also spatially constrain cells, and must therefore be modified to allow cellular expansion. The long-standing acid growth theory postulates that auxin triggers apoplast acidification, thereby activating cell wall-loosening enzymes that enable cell expansion in shoots. Interestingly, this model remains heavily debated in roots, because of both the complex role of auxin in plant development as well as technical limitations in investigating apoplastic pH at cellular resolution. Here, we introduce 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) as a suitable fluorescent pH indicator for assessing apoplastic pH, and thus acid growth, at a cellular resolution in Arabidopsis thaliana roots. Using HPTS, we demonstrate that cell wall acidification triggers cellular expansion, which is correlated with a preceding increase of auxin signaling. Reduction in auxin levels, perception, or signaling abolishes both the extracellular acidification and cellular expansion. These findings jointly suggest that endogenous auxin controls apoplastic acidification and the onset of cellular elongation in roots. In contrast, an endogenous or exogenous increase in auxin levels induces a transient alkalinization of the extracellular matrix, reducing cellular elongation. The receptor-like kinase FERONIA is required for this physiological process, which affects cellular root expansion during the gravitropic response. These findings pinpoint a complex, presumably concentration-dependent role for auxin in apoplastic pH regulation, steering the rate of root cell expansion and gravitropic response.


2005 ◽  
Vol 32 (10) ◽  
pp. 911 ◽  
Author(s):  
Erin M. O'Donoghue ◽  
Jocelyn R. Eason ◽  
Sheryl D. Somerfield ◽  
Dacey A. Ryan

Three glycosyl hydrolase family 35 β-galactosidase-encoding cDNAs, SaGAL1 (full-length), SaGAL2 and SaGA3L (both partial), have been isolated from Sandersonia aurantiaca (Hook.) SaGAL1 protein was functionally expressed in E. coli and β-galactosidase identity confirmed by activity assay. All three clones are primarily expressed in tepal tissues of senescing sandersonia flowers. In order to identify relationships between tepal texture and galactose metabolism, cut sandersonia flowers were treated with sucrose, periods of dryness or PEG and parameters associated with galactose metabolism and firmness were monitored. Sucrose supplementation, known to increase tepal firmness, delayed expression of SaGAL1 and SaGAL3 in opening (stage 5) flowers, whereas the response to periods of dryness followed by rehydration depended on the maturity of the flower. These treatments also tended to hasten the onset of processes associated with programmed cell death, monitored by PRT5 (a senescence-associated protease) expression. Galactosidase activity and cell wall galactose content were also affected but in an inconsistent manner. PEG supplied to opening flowers for 1 d followed by water, induced a long period of wilt, and intensive PRT5 expression. However, β-galactosidase gene expression and activity was delayed in these flowers, and cell-wall galactose content changed apparently independently of galactosidase activity. We have not been able to demonstrate a causal connection between the change in petal texture and concurrent induction of galactose mobilisation in sandersonia during normal development and senescence. The nucleotide sequence data reported appears in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under accession number AY280498 (SaGAL1), AY280499 (SaGAL2), AY280500 (SaGAL3).


2018 ◽  
Vol 16 (1) ◽  
pp. 44-53
Author(s):  
Marina Campos Rocha ◽  
Camilla Alves Santos ◽  
Iran Malavazi

Different signaling cascades including the Cell Wall Integrity (CWI), the High Osmolarity Glycerol (HOG) and the Ca2+/calcineurin pathways control the cell wall biosynthesis and remodeling in fungi. Pathogenic fungi, such as Aspergillus fumigatus and Candida albicans, greatly rely on these signaling circuits to cope with different sources of stress, including the cell wall stress evoked by antifungal drugs and the host’s response during infection. Hsp90 has been proposed as an important regulatory protein and an attractive target for antifungal therapy since it stabilizes major effector proteins that act in the CWI, HOG and Ca2+/calcineurin pathways. Data from the human pathogen C. albicans have provided solid evidence that loss-of-function of Hsp90 impairs the evolution of resistance to azoles and echinocandin drugs. In A. fumigatus, Hsp90 is also required for cell wall integrity maintenance, reinforcing a coordinated function of the CWI pathway and this essential molecular chaperone. In this review, we focus on the current information about how Hsp90 impacts the aforementioned signaling pathways and consequently the homeostasis and maintenance of the cell wall, highlighting this cellular event as a key mechanism underlying antifungal therapy based on Hsp90 inhibition.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Celine Moorman ◽  
Ronald H A Plasterk

AbstractThe sgs-1 (suppressor of activated Gαs) gene encodes one of the four adenylyl cyclases in the nematode C. elegans and is most similar to mammalian adenylyl cyclase type IX. We isolated a complete loss-of-function mutation in sgs-1 and found it to result in animals with retarded development that arrest in variable larval stages. sgs-1 mutant animals exhibit lethargic movement and pharyngeal pumping and (while not reaching adulthood) have a mean life span that is >50% extended compared to wild type. An extensive set of reduction-of-function mutations in sgs-1 was isolated in a screen for suppressors of a neuronal degeneration phenotype induced by the expression of a constitutively active version of the heterotrimeric Gαs subunit of C. elegans. Although most of these mutations change conserved residues within the catalytic domains of sgs-1, mutations in the less-conserved transmembrane domains are also found. The sgs-1 reduction-of-function mutants are viable and have reduced locomotion rates, but do not show defects in pharyngeal pumping or life span.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


2005 ◽  
Vol 389 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Taisei KIKUCHI ◽  
Hajime SHIBUYA ◽  
John T. JONES

We report the cloning and functional characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. This is the first gene of this type from any nematode species. We show that a similar cDNA is also present in another closely related species B. mucronatus, but that similar sequences are not present in any other nematode studied to date. The B. xylophilus gene is expressed solely in the oesophageal gland cells of the nematode and the protein is present in the nematode's secretions. The deduced amino acid sequence of the gene is very similar to glycosyl hydrolase family 16 proteins. The recombinant protein, expressed in Escherichia coli, preferentially hydrolysed the β-1,3-glucan laminarin, and had very low levels of activity on β-1,3-1,4-glucan, lichenan and barley β-glucan. Laminarin was degraded in an endoglucanase mode by the enzyme. The optimal temperature and pH for activity of the recombinant enzyme were 65 °C and pH 4.9. The protein is probably important in allowing the nematodes to feed on fungi. Sequence comparisons suggest that the gene encoding the endo-β-1,3-glucanase was acquired by horizontal gene transfer from bacteria. B. xylophilus therefore contains genes that have been acquired by this process from both bacteria and fungi. These findings support the idea that multiple independent horizontal gene transfer events have helped in shaping the evolution of several different life strategies in nematodes.


Sign in / Sign up

Export Citation Format

Share Document