scholarly journals Genome sequences of both organelles of the grapevine rootstock cultivar 'Börner'

2020 ◽  
Author(s):  
Bianca Frommer ◽  
Daniela Luise Holtgräwe ◽  
Ludger Hausmann ◽  
Prisca Viehöver ◽  
Bruno Hüttel ◽  
...  

Genomic long reads of the interspecific grapevine rootstock cultivar 'Börner' (Vitis riparia GM183 x Vitis cinerea Arnold) were used to assemble its chloroplast and mitochondrion genome sequences. We annotated 133 chloroplast and 172 mitochondrial genes including the RNA-editing sites. The organellar genomes were maternally inherited to 'Börner' from Vitis riparia.

2020 ◽  
Vol 9 (15) ◽  
Author(s):  
Bianca Frommer ◽  
Daniela Holtgräwe ◽  
Ludger Hausmann ◽  
Prisca Viehöver ◽  
Bruno Huettel ◽  
...  

Genomic long reads of the interspecific grapevine rootstock cultivar ‘Börner’ (Vitis riparia GM183 × Vitis cinerea Arnold) were used to assemble its chloroplast and mitochondrion genome sequences. We annotated 133 chloroplast and 172 mitochondrial genes, including the RNA editing sites. The organelle genomes in ‘Börner’ were maternally inherited from Vitis riparia.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9309
Author(s):  
Viktoria Yu Shtratnikova ◽  
Mikhail I. Schelkunov ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.


2021 ◽  
Vol 10 (41) ◽  
Author(s):  
Mariem Ben Khedher ◽  
Fredrik Nindo ◽  
Alicia Chevalier ◽  
Stéphane Bonacorsi ◽  
Gregory Dubourg ◽  
...  

We report here the complete genome sequences of three Bacillus cereus group strains isolated from blood cultures from premature and immunocompromised infants hospitalized in intensive care units in three French hospitals. These complete genome sequences were obtained from a combination of Illumina HiSeq X Ten short reads and Oxford Nanopore MinION long reads.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Håkon Kaspersen ◽  
Thomas H. A. Haverkamp ◽  
Hanna Karin Ilag ◽  
Øivind Øines ◽  
Camilla Sekse ◽  
...  

ABSTRACT In total, 12 quinolone-resistant Escherichia coli (QREC) strains containing qnrS1 were submitted to long-read sequencing using a FLO-MIN106 flow cell on a MinION device. The long reads were assembled with short reads (Illumina) and analyzed using the MOB-suite pipeline. Six of these QREC genome sequences were closed after hybrid assembly.


1990 ◽  
Vol 9 (1) ◽  
pp. 257-262 ◽  
Author(s):  
H. Van der Spek ◽  
D. Speijer ◽  
G.J. Arts ◽  
J. Van den Burg ◽  
H. Van Steeg ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9378
Author(s):  
Yuzhe Sun ◽  
Min Xie ◽  
Zhou Xu ◽  
Koon Chuen Chan ◽  
Jia Yi Zhong ◽  
...  

Nitrogen fixation in soybean consumes a tremendous amount of energy, leading to substantial differences in energy metabolism and mitochondrial activities between nodules and uninoculated roots. While C-to-U RNA editing and intron splicing of mitochondrial transcripts are common in plant species, their roles in relation to nodule functions are still elusive. In this study, we performed RNA-seq to compare transcript profiles and RNA editing of mitochondrial genes in soybean nodules and roots. A total of 631 RNA editing sites were identified on mitochondrial transcripts, with 12% or 74 sites differentially edited among the transcripts isolated from nodules, stripped roots, and uninoculated roots. Eight out of these 74 differentially edited sites are located on the matR transcript, of which the degrees of RNA editing were the highest in the nodule sample. The degree of mitochondrial intron splicing was also examined. The splicing efficiencies of several introns in nodules and stripped roots were higher than in uninoculated roots. These include nad1 introns 2/3/4, nad4 intron 3, nad5 introns 2/3, cox2 intron 1, and ccmFc intron 1. A greater splicing efficiency of nad4 intron 1, a higher NAD4 protein abundance, and a reduction in supercomplex I + III2 were also observed in nodules, although the causal relationship between these observations requires further investigation.


Rice Science ◽  
2019 ◽  
Vol 26 (5) ◽  
pp. 282-289
Author(s):  
Umakanta Ngangkham ◽  
Swarup Kumar Parida ◽  
Ashok Kumar Singh ◽  
Trilochan Mohapatra

Sign in / Sign up

Export Citation Format

Share Document