scholarly journals Identifying therapeutic drug targets for rare and common forms of short stature

2020 ◽  
Author(s):  
Karol Estrada ◽  
Steven Froelich ◽  
Arthur Wuster ◽  
Christopher R. Bauer ◽  
Teague Sterling ◽  
...  

AbstractWhile GWAS of common diseases has delivered thousands of novel genetic findings, prioritizing genes for translation to therapeutics has been challenging. Here, we propose an approach to resolve that issue by identifying genes that have both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). Bidirectionality is a desirable feature of the best targets because it implies both a causal role on the phenotype in one direction and that modulating the target activity might be safe and therapeutically beneficial in the other.We used height, a highly heritable trait and a model of complex diseases, to test our approach. Using 34,231 individuals with exome sequence data and height, we identified five genes (IGF1R, NPPC, NPR2, FGFR3, and SHOX) with evidence for bidirectional effects on stature. Rare protein-altering variants significantly increased risk for idiopathic short stature (ISS) (OR=2.75, p= 3.99×10−8). These genes are key members of the only two pathways successfully targeted for short stature: Growth Hormone/Insulin-like growth factor 1 axis and C-type Natriuretic peptide (CNP) for Achondroplasia, a monogenic form of dwarfism. We assayed a subset of NPR2 mutations and identified those with elevated (GoF) and diminished (LoF) activity and found that a polygenic score for height modulates the penetrance of pathogenic variants. We also demonstrated that adding exogenous CNP (encoded by NPPC) rescues the NPR2 haploinsufficiency molecular phenotype in a CRISPR-engineered cell line, thus validating its potential therapeutic treatment for inherited forms of short stature. Finally, we found that these BEST targets increase the probability of success in clinical trials above and beyond targets with other genetic evidence. Our results show the value of looking for bidirectional effects to identify and validate drug targets.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karol Estrada ◽  
Steven Froelich ◽  
Arthur Wuster ◽  
Christopher R. Bauer ◽  
Teague Sterling ◽  
...  

AbstractPrioritizing genes for translation to therapeutics for common diseases has been challenging. Here, we propose an approach to identify drug targets with high probability of success by focusing on genes with both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). We find 98 BEST genes for a variety of indications. Drugs targeting those genes are 3.8-fold more likely to be approved than non-BEST genes. We focus on five genes (IGF1R, NPPC, NPR2, FGFR3, and SHOX) with evidence for bidirectional effects on stature. Rare protein-altering variants in those genes result in significantly increased risk for idiopathic short stature (ISS) (OR = 2.75, p = 3.99 × 10−8). Finally, using functional experiments, we demonstrate that adding an exogenous CNP analog (encoded by NPPC) rescues the phenotype, thus validating its potential as a therapeutic treatment for ISS. Our results show the value of looking for bidirectional effects to identify and validate drug targets.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 1520-1520
Author(s):  
Rachel Rosenblum ◽  
Sabrina A. Suckiel ◽  
Gillian M. Belbin ◽  
Sinead Cullina ◽  
Judy H. Cho ◽  
...  

1520 Background: Lynch syndrome (LS), caused by germline pathogenic variants in mismatch repair (MMR) genes, results in increased risk of colorectal, endometrial, and other cancers. LS has a prevalence of ~1 in 440 in European ancestry populations; prevalence data in other populations are limited. We identified and characterized carriers of pathogenic MMR gene variants in the multi-ethnic Bio Me Biobank in New York City. Methods: Exome sequence data from ~31,000 Bio Me participants were evaluated for known (per ClinVar) and predicted (loss-of-function) pathogenic variants in MMR genes. Population groups were defined by genetic ancestry. Participant questionnaires and electronic health records (EHRs) of carriers were reviewed for personal or family history of malignancy. Results: We identified 48 carriers of 33 distinct pathogenic variants in PMS2 (48%), MLH1 (27%), MSH6 (15%), and MSH2 (10%), for an estimated prevalence of ~1/640 in the Bio Me Biobank. Prevalence was higher among individuals of Non-Jewish European (N = 14; 1/400) and African (N = 14; 1/490) ancestries, compared to Puerto Rican (N = 8; 1/640), Ashkenazi Jewish (N = 6; 1/690), and other/mixed (N = 6) ancestries. Carriers had a median age of 56 (range 27 to 77) years and were 50% female. Overall rate of malignancy among carriers was 38%, with the lowest rate in PMS2 (26%) and the highest rate in MSH6 (57%) variant carriers. We found a high prevalence of endometrial cancer (21% of female carriers) and a lower prevalence of colorectal cancer (4% of all carriers). Only 2 carriers (4%) had a diagnosis of LS in their EHRs, and only 1 carrier met Amsterdam diagnostic criteria for LS. Conclusions: These data show that ~0.15% of participants in a multi-ethnic biobank are carriers of pathogenic MMR gene variants and suggest that the prevalence is higher in European and lower in non-European ancestry populations. Notably, most carriers do not have a clinical diagnosis of LS and do not meet diagnostic criteria for LS. Carriers demonstrate variable rates of cancer, which may contribute to under-diagnosis of LS. Genomic screening for pathogenic MMR variants may lead to earlier diagnosis of LS and improved outcomes.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Samina Yasin ◽  
Outi Makitie ◽  
Sadaf Naz

Abstract Background Loss of function or gain of function variants of Filamin B (FLNB) cause recessive or dominant skeletal disorders respectively. Spondylocarpotarsal synostosis syndrome (SCT) is a rare autosomal recessive disorder characterized by short stature, fused vertebrae and fusion of carpal and tarsal bones. We present a novel FLNB homozygous pathogenic variant and present a carrier of the variant with short height. Case presentation We describe a family with five patients affected with skeletal malformations, short stature and vertebral deformities. Exome sequencing revealed a novel homozygous frameshift variant c.2911dupG p.(Ala971GlyfsTer122) in FLNB, segregating with the phenotype in the family. The variant was absent in public databases and 100 ethnically matched control chromosomes. One of the heterozygous carriers of the variant had short stature. Conclusion Our report expands the genetic spectrum of FLNB pathogenic variants. It also indicates a need to assess the heights of other carriers of FLNB recessive variants to explore a possible role in idiopathic short stature.


Author(s):  
Henne Holstege ◽  
Marc Hulsman ◽  
Camille Charbonnier ◽  
Benjamin Grenier-Boley ◽  
Olivier Quenez ◽  
...  

Background: With the development of next-generation sequencing technologies, it is possible to identify rare genetic variants that influence the risk of complex disorders. To date, whole exome sequencing (WES) strategies have shown that specific clusters of damaging rare variants in the TREM2, SORL1 and ABCA7 genes are associated with an increased risk of developing Alzheimers Disease (AD), reaching odds ratios comparable with the APOE-ε4 allele, the main common AD genetic risk factor. Here, we set out to identify additional AD-associated genes by an exome-wide investigation of the burden of rare damaging variants in the genomes of AD cases and cognitively healthy controls. Method: We integrated the data from 25,982 samples from the European ADES consortium and the American ADSP consortium. We developed new techniques to homogenise and analyse these data. Carriers of pathogenic variants in genes associated with Mendelian inheritance of dementia were excluded. After quality control, we used 12,652 AD cases and 8,693 controls for analysis. Genes were analysed using a burden analysis, including both non-synonymous and loss-of-function rare variants, the impact of which was prioritised using REVEL. Result: We confirmed that carrying rare protein-damaging genetic variants in TREM2, SORL1 or ABCA7 is associated with increased AD-risk. Moreover, we found that carrying rare damaging variants in the microglial ATP8B4 gene was significantly associated with AD, and we found suggestive evidence that rare variants in ADAM10, ABCA1, ORC6, B3GNT4 and SRC genes associated with increased AD risk. High-impact variants in these genes were mostly extremely rare and enriched in AD patients with earlier ages at onset. Additionally, we identified two suggestive protective associations in CBX3 and PRSS3. We are currently replicating these associations in independent datasets. Conclusion: With our newly developed homogenisation methods, we identified novel genetic determinants of AD which provide further evidence for a pivotal role of APP processing, lipid metabolism, and microglia and neuro-inflammatory processes in AD pathophysiology.


2021 ◽  
Author(s):  
Tony Zeng ◽  
Yang I Li

Recent progress in deep learning approaches have greatly improved the prediction of RNA splicing from DNA sequence. Here, we present Pangolin, a deep learning model to predict splice site strength in multiple tissues that has been trained on RNA splicing and sequence data from four species. Pangolin outperforms state of the art methods for predicting RNA splicing on a variety of prediction tasks. We use Pangolin to study the impact of genetic variants on RNA splicing, including lineage-specific variants and rare variants of uncertain significance. Pangolin predicts loss-of-function mutations with high accuracy and recall, particularly for mutations that are not missense or nonsense (AUPRC = 0.93), demonstrating remarkable potential for identifying pathogenic variants.


Author(s):  
Caroline F. Wright ◽  
◽  
Ruth Y. Eberhardt ◽  
Panayiotis Constantinou ◽  
Matthew E. Hurles ◽  
...  

Abstract Purpose Automated variant filtering is an essential part of diagnostic genome-wide sequencing but may generate false negative results. We sought to investigate whether some previously identified pathogenic variants may be being routinely excluded by standard variant filtering pipelines. Methods We evaluated variants that were previously classified as pathogenic or likely pathogenic in ClinVar in known developmental disorder genes using exome sequence data from the Deciphering Developmental Disorders (DDD) study. Results Of these ClinVar pathogenic variants, 3.6% were identified among 13,462 DDD probands, and 1134/1352 (83.9%) had already been independently communicated to clinicians using DDD variant filtering pipelines as plausibly pathogenic. The remaining 218 variants failed consequence, inheritance, or other automated variant filters. Following clinical review of these additional variants, we were able to identify 112 variants in 107 (0.8%) DDD probands as potential diagnoses. Conclusion Lower minor allele frequency (<0.0005%) and higher gold star review status in ClinVar (>1 star) are good predictors of a previously identified variant being plausibly diagnostic for developmental disorders. However, around half of previously identified pathogenic variants excluded by automated variant filtering did not appear to be disease-causing, underlining the continued need for clinical evaluation of candidate variants as part of the diagnostic process.


2021 ◽  
Author(s):  
Iain S. Forrest ◽  
Kumardeep Chaudhary ◽  
Ha My T. Vy ◽  
Shantanu Bafna ◽  
Daniel M. Jordan ◽  
...  

ABSTRACTA major goal of genomic medicine is to quantify the disease risk of genetic variants. Here, we report the penetrance of 37,772 clinically relevant variants (including those reported in ClinVar1 and of loss-of-function consequence) for 197 diseases in an analysis of exome sequence data for 72,434 individuals over five ancestries and six decades of ages from two large-scale population-based biobanks (BioMe Biobank and UK Biobank). With a high-quality set of 5,359 clinically impactful variants, we evaluate disease prevalence in carriers and non-carriers to interrogate major determinants and implications of penetrance. First, we associate biomarker levels with penetrance of variants in known disease-predisposition genes and illustrate their clear biological link to disease. We then systematically uncover large numbers of ClinVar pathogenic variants that confer low risk of disease, even among those reviewed by experts, while delineating stark differences in variant penetrance by molecular consequence. Furthermore, we ascertain numerous variants present in non-European ancestries and reveal how increasing carrier age modifies penetrance estimates. Lastly, we examine substantial heterogeneity of penetrance among variants in known disease-predisposition genes for conditions such as familial hypercholesterolemia and breast cancer. These data indicate that existing categorical systems for variant classification do not adequately capture disease risk and warrant consideration of a more quantitative system based on population-based penetrance to evaluate clinical impact.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sean J Jurgens ◽  
Seung Hoan Choi ◽  
Christopher M Haggerty ◽  
Amelia W Hall ◽  
Jennifer Halford ◽  
...  

Introduction: Electrocardiogram (ECG) intervals are quantitative and heritable endophenotypes for arrhythmias and sudden cardiac death (SCD). Studying rare sequence variation related to ECG intervals may help identify the genetic underpinnings of cardiac conduction and SCD. Methods: Using a discovery sample of 29,000 individuals with whole-genome sequences from TOPMed and a replication sample of about 100,000 individuals with whole-exome sequence data from the UK Biobank and MyCode, we examined associations between low-frequency (MAF<1%) and rare (MAF<0.1%) coding variants with 5 routinely ascertained ECG intervals (RR, P-wave, PR, QRS, and QTc intervals). We further assessed pathogenic variants in identified genes using ClinVar. Results: In low-frequency single variant analysis, we observed associations for PR interval in PAM ( P =2x10 -7 ) and MFGE8 ( P =5x10 -8 ). In gene-based tests, we identified rare coding variation associated with marked effects in established SCD genes KCNQ1, KCNH2, SCN5A and KCNE1 . For example, loss-of-function or pathogenic variants in KCNQ1 and KCNH2 were carried in 0.2% of individuals, were associated with 29 ms longer QTc intervals ( P =2x10 -82 ) and conferred up to 23-fold increased odds of marked QTc prolongation ( P =4x10 -25 ). Nevertheless, over 75% of carriers had normal QTc intervals. Similarly, loss-of-function or pathogenic variants in SCN5A , carried by 0.1% of individuals, conferred marked PR prolongation (31 ms), yet less than 30% of carriers had first-degree atrioventricular block. Discussion: This study demonstrates the value of studying ECGs in large sequenced biobanks for identifying rare variants predisposing to cardiac arrhythmias. Results define the frequency of pathogenic variation in SCD genes in the population and document incomplete penetrance of such variation. Our findings may serve as a benchmark for future population-based analyses aimed at discovering clinically actionable variants and genes.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Noura S. Abul-Husn ◽  
◽  
Emily R. Soper ◽  
Jacqueline A. Odgis ◽  
Sinead Cullina ◽  
...  

Abstract Background Pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) lead to increased risk of breast, ovarian, and other cancers, but most variant-positive individuals in the general population are unaware of their risk, and little is known about prevalence in non-European populations. We investigated BRCA1/2 prevalence and impact in the electronic health record (EHR)-linked BioMe Biobank in New York City. Methods Exome sequence data from 30,223 adult BioMe participants were evaluated for pathogenic variants in BRCA1/2. Prevalence estimates were made in population groups defined by genetic ancestry and self-report. EHR data were used to evaluate clinical characteristics of variant-positive individuals. Results There were 218 (0.7%) individuals harboring expected pathogenic variants, resulting in an overall prevalence of 1 in 139. The highest prevalence was in individuals with Ashkenazi Jewish (AJ; 1 in 49), Filipino and other Southeast Asian (1 in 81), and non-AJ European (1 in 103) ancestry. Among 218 variant-positive individuals, 112 (51.4%) harbored known founder variants: 80 had AJ founder variants (BRCA1 c.5266dupC and c.68_69delAG, and BRCA2 c.5946delT), 8 had a Puerto Rican founder variant (BRCA2 c.3922G>T), and 24 had one of 19 other founder variants. Non-European populations were more likely to harbor BRCA1/2 variants that were not classified in ClinVar or that had uncertain or conflicting evidence for pathogenicity (uncertain/conflicting). Within mixed ancestry populations, such as Hispanic/Latinos with genetic ancestry from Africa, Europe, and the Americas, there was a strong correlation between the proportion of African genetic ancestry and the likelihood of harboring an uncertain/conflicting variant. Approximately 28% of variant-positive individuals had a personal history, and 45% had a personal or family history of BRCA1/2-associated cancers. Approximately 27% of variant-positive individuals had prior clinical genetic testing for BRCA1/2. However, individuals with AJ founder variants were twice as likely to have had a clinical test (39%) than those with other pathogenic variants (20%). Conclusions These findings deepen our knowledge about BRCA1/2 variants and associated cancer risk in diverse populations, indicate a gap in knowledge about potential cancer-related variants in non-European populations, and suggest that genomic screening in diverse patient populations may be an effective tool to identify at-risk individuals.


Sign in / Sign up

Export Citation Format

Share Document