scholarly journals Mortality and coexistence time both cause changes in predator-prey co-evolutionary dynamics

2020 ◽  
Author(s):  
Thomas Scheuerl ◽  
Veijo Kaitala

AbstractAll organisms are sensitive to the abiotic environment, and in multispecies communities a deteriorating environment increasing mortality and limiting coexistence time can cause ecological changes. When interaction within the community is changed this can impact co-evolutionary processes. Here we use a mathematical model to predict ecological and evolutionary changes in a simple predator-prey community under different mortality rates and times of coexistence, both controlled by various transfer volume and transfer interval. In the simulated bacteria-ciliate system, we find species densities to be surprisingly robust under changed mortality rates and times both species coexist, resulting in stable densities. Confirming a theoretical prediction however, the evolution of anti-predator defence in the bacteria and evolution of predation efficiency in ciliates relax under high mortalities and limited times both partners interact. In contrast, evolutionary trajectories intensify when global mortalities are low, and the predator-prey community has more time for close interaction. These results provide testable hypotheses for future studies of predator-prey systems and we hope this work will help to bridge the gap in our knowledge how ecological and evolutionary process together shape composition of microbial communities.

Author(s):  
Thomas Scheuerl ◽  
Veijo Kaitala

All organisms are susceptible to the environment and changing environmental conditions can infer structural modifications in predator-prey communities. A change in the environment can influence, for example, the mortality rate of both the prey and the predator, or determine how long the interaction between both partners is. This may have a substantial impact on ecological, but also evolutionary dynamics. Experimental studies, in which microbial populations are maintained by a repeated dilution into fresh conditions after a certain period of time, are able to dissipate underlying mechanisms in a controlled way. By design, dilution rate (modifying mortality) and transfer interval (determining the time of interaction) are crucial factors, but they often receive little attention in experimental design. We study data from a live predator-prey (bacteria and ciliates) system used to gain insight into eco-evolutionary principles and apply a mathematical model to predict how various dilution rates and transfer intervals would affect such an experiment. We find the ecological dynamics to be surprisingly robust for both factors. However, the evolutionary rates are expected to be affected. Our work predicts that the evolution of the anti-predator defence in the bacteria, and the evolution of the predation efficiency in the ciliates, both decrease with higher dilution rate, but increase with longer transfer intervals. Our results provide testable hypotheses for future studies of predator-prey systems and we hope this work will help improving our understanding how ecological and evolutionary processes together shape composition of microbial communities.


2009 ◽  
Vol 364 (1523) ◽  
pp. 1483-1489 ◽  
Author(s):  
F. Pelletier ◽  
D. Garant ◽  
A.P. Hendry

Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes.


2017 ◽  
Author(s):  
Artur Rego-Costa ◽  
Florence Débarre ◽  
Luis-Miguel Chevin

Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution, by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability.


2019 ◽  
Author(s):  
Raphael Royauté ◽  
Ann Hedrick ◽  
Ned A. Dochtermann

AbstractBehaviors are often correlated within broader syndromes, creating the potential for evolution in one behavior to drive evolutionary changes in other behaviors. Despite demonstrations that behavioral syndromes are common across taxa, whether this potential for evolutionary effects is realized has not yet been demonstrated. Here we show that populations of field crickets (Gryllus integer) exhibit a genetically conserved behavioral syndrome structure despite differences in average behaviors. We found that the distribution of genetic variation and genetic covariance among behavioral traits was consistent with genes and cellular mechanisms underpinning behavioral syndromes rather than correlated selection. Moreover, divergence among populations’ average behaviors was constrained by the genetically conserved behavioral syndrome. Our results demonstrate that a conserved genetic architecture linking behaviors has shaped the evolutionary trajectories of populations in disparate environments—illustrating an important way by which behavioral syndromes result in shared evolutionary fates.


Author(s):  
John P. DeLong

Predator-prey interactions form an essential part of ecological communities, determining the flow of energy from autotrophs to top predators. The rate of predation is a key regulator of that energy flow, and that rate is determined by the functional response. Functional responses themselves are emergent ecological phenomena – they reflect morphology, behavior, and physiology of both predator and prey and are both outcomes of evolution and the source of additional evolution. The functional response is thus a concept that connects many aspects of biology from behavioral ecology to eco-evolutionary dynamics to food webs, and as a result, the functional response is the key to an integrative science of predatory ecology. In this book, I provide a synthesis of research on functional responses, starting with the basics. I then break the functional response down into foraging components and connect these to the traits and behaviors that connect species in food webs. I conclude that contrary to appearances, we know very little about functional responses, and additional work is necessary for us to understand how environmental change and management will impact ecological systems


2018 ◽  
pp. 403-424
Author(s):  
Matthew R. Walsh ◽  
Michelle Packer ◽  
Shannon Beston ◽  
Collin Funkhouser ◽  
Michael Gillis ◽  
...  

Much research has shown that variation in ecological processes can drive rapid evolutionary changes over periods of years to decades. Such contemporary adaptation sets the stage for evolution to have reciprocal impacts on the properties of populations, communities, and ecosystems, with ongoing interactions between ecological and evolutionary forces. The importance and generality of these eco-evolutionary dynamics are largely unknown. In this chapter, we promote the use of water fleas (Daphnia sp.) as a model organism in the exploration of eco-evolutionary interactions in nature. The many characteristics of Daphnia that make them suitable for laboratory study in conjunction with their well-known ecological importance in lakes, position Daphnia to contribute new and important insights into eco-evolutionary dynamics. We first review the influence of key environmental stressors in Daphnia evolution. We then highlight recent work documenting the pathway from life history evolution to ecology using Daphnia as a model. This review demonstrates that much is known about the influence of ecology on Daphnia life history evolution, while research exploring the genomic basis of adaptation as well as the influence of Daphnia life history traits on ecological processes is beginning to accumulate.


2021 ◽  
pp. 329-340
Author(s):  
Anna Kuparinen

Contemporary evolution that occurs across ecologically relevant time scales, such as a few generations or decades, can not only change phenotypes but also feed back to demographic parameters and the dynamics of populations. This chapter presents a method to make phenotypic traits evolve in mechanistic individual-based simulations. The method is broadly applicable, as demonstrated through its applications to boreal forest adaptation to global warming, eco-evolutionary dynamics driven by fishing-induced selection in Atlantic cod, and the evolution of age at maturity in Atlantic salmon. The main message of this chapter is that there may be little reason to exclude phenotypic evolution in analyses of population dynamics, as these can be modified by evolutionary changes in life histories. Future challenges will be to integrate rapidly accumulating genomic knowledge and an ecosystem perspective to improve population projections and to better understand the drivers of population dynamics.


2019 ◽  
Vol 6 (2) ◽  
pp. 181273 ◽  
Author(s):  
Hye Jin Park ◽  
Chaitanya S. Gokhale

Spatial patterns are ubiquitous across different scales of organization in ecological systems. Animal coat pattern, spatial organization of insect colonies and vegetation in arid areas are prominent examples from such diverse ecologies. Typically, pattern formation has been described by reaction–diffusion equations, which consider individuals dispersing between subpopulations of a global pool. This framework applied to public goods game nicely showed the endurance of populations via diffusion and generation of spatial patterns. However, how the spatial characteristics, such as diffusion, are related to the eco-evolutionary process as well as the nature of the feedback from evolution to ecology and vice versa, has been so far neglected. We present a thorough analysis of the ecologically driven evolutionary dynamics in a spatially extended version of ecological public goods games. Furthermore, we show how these evolutionary dynamics feed back into shaping the ecology, thus together determining the fate of the system.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20200526
Author(s):  
Thomas M. Luhring ◽  
John P. DeLong

Trait evolution in predator–prey systems can feed back to the dynamics of interacting species as well as cascade to impact the dynamics of indirectly linked species (eco-evolutionary trophic cascades; EETCs). A key mediator of trophic cascades is body mass, as it both strongly influences and evolves in response to predator–prey interactions. Here, we use Gillespie eco-evolutionary models to explore EETCs resulting from top predator loss and mediated by body mass evolution. Our four-trophic-level food chain model uses allometric scaling to link body mass to different functions (ecological pleiotropy) and is realistically parameterized from the FORAGE database to mimic the parameter space of a typical freshwater system. To track real-time changes in selective pressures, we also calculated fitness gradients for each trophic level. As predicted, top predator loss generated alternating shifts in abundance across trophic levels, and, depending on the nature and strength in changes to fitness gradients, also altered trajectories of body mass evolution. Although more distantly linked, changes in the abundance of top predators still affected the eco-evolutionary dynamics of the basal producers, in part because of their relatively short generation times. Overall, our results suggest that impacts on top predators can set off transient EETCs with the potential for widespread indirect impacts on food webs.


Sign in / Sign up

Export Citation Format

Share Document