scholarly journals Toxoplasma gondii co-opts the unfolded protein response to enhance migration and dissemination of infected host cells

2020 ◽  
Author(s):  
Leonardo Augusto ◽  
Jennifer Martynowicz ◽  
Parth H. Amin ◽  
Nada S. Alakhras ◽  
Mark H. Kaplan ◽  
...  

AbstractToxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further found that host IRE1, an ER stress sensor protein activated during Toxoplasma infection, also plays a noncanonical role in actin remodeling by binding filamin A in infected cells. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo. Our study identifies novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis.ImportanceCells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this study, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration does not involve the enzymatic activity of IRE1, but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo. Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Leonardo Augusto ◽  
Jennifer Martynowicz ◽  
Parth H. Amin ◽  
Nada S. Alakhras ◽  
Mark H. Kaplan ◽  
...  

ABSTRACT Toxoplasma gondii is an intracellular parasite that reconfigures its host cell to promote pathogenesis. One consequence of Toxoplasma parasitism is increased migratory activity of host cells, which facilitates dissemination. Here, we show that Toxoplasma triggers the unfolded protein response (UPR) in host cells through calcium release from the endoplasmic reticulum (ER). We further identify a novel role for the host ER stress sensor protein IRE1 in Toxoplasma pathogenesis. Upon infection, Toxoplasma activates IRE1, engaging its noncanonical role in actin remodeling through the binding of filamin A. By inducing cytoskeletal remodeling via IRE1 oligomerization in host cells, Toxoplasma enhances host cell migration in vitro and dissemination of the parasite to host organs in vivo. Our study has identified novel mechanisms used by Toxoplasma to induce dissemination of infected cells, providing new insights into strategies for treatment of toxoplasmosis. IMPORTANCE Cells that are infected with the parasite Toxoplasma gondii exhibit heightened migratory activity, which facilitates dissemination of the infection throughout the body. In this report, we identify a new mechanism used by Toxoplasma to hijack its host cell and increase its mobility. We further show that the ability of Toxoplasma to increase host cell migration involves not the enzymatic activity of IRE1 but rather IRE1 engagement with actin cytoskeletal remodeling. Depletion of IRE1 from infected host cells reduces their migration in vitro and significantly hinders dissemination of Toxoplasma in vivo. Our findings reveal a new mechanism underlying host-pathogen interactions, demonstrating how host cells are co-opted to spread a persistent infection around the body.


2015 ◽  
Vol 26 (5) ◽  
pp. 913-923 ◽  
Author(s):  
Benjamin Wiles ◽  
Miao Miao ◽  
Erin Coyne ◽  
Louise Larose ◽  
Andrey V. Cybulsky ◽  
...  

USP19 deubiquitinating enzyme has two isoforms, cytoplasmic and endoplasmic reticulum (ER) localized. The ER-localized isoform specifically suppresses muscle cell differentiation in vitro and appears to do so by inhibiting the unfolded-protein response that occurs during such differentiation. In vivo, loss of USP19 promotes muscle regeneration following injury.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1350-1350
Author(s):  
Steffan T. Nawrocki ◽  
Yingchun Han ◽  
Ronan LE Moigne ◽  
Valeria Visconte ◽  
Bartlomiej Przychodzen ◽  
...  

Abstract Acute myeloid leukemia (AML) therapy has remained relatively unchanged for more than 40 years with the majority of patients not achieving long-term remission when treated with currently available agents. Novel strategies are urgently needed to improve outcomes. The constitutive dysregulation of protein synthesis/turnover contributes to disease progression and drug resistance in many forms of cancer including AML. p97 (VCP) is a master regulator of protein turnover that has been implicated in oncogenesis and malignant pathogenesis. CB-5083 is a first-in-class selective and potent orally available inhibitor of p97 that in currently being evaluated in phase I clinical trials in patients with multiple myeloma and advanced solid tumors. To assess the potential benefit of p97 inhibition as a novel approach for AML therapy, we investigated the efficacy, pharmacodynamics (PD), and pharmacokinetics (PK) of CB-5083 in a panel of human AML cell lines with diverse genetic backgrounds, primary AML specimens from both newly diagnosed and relapsed/refractory patients, and xenograft mouse models of AML. In vitro treatment with CB-5083 potently diminished the viability of AML cell lines (n = 7) and primary CD34+ blasts obtained from patients (n = 10) with IC50s significantly below 1 µM (range 200 - 700 nM) in all lines and specimens evaluated to date. Diminished viability was associated with reduced clonogenic survival and increased apoptosis in AML cell lines and primary blasts. In contrast to many conventional and experimental drugs that are less active against primary AML cells than established AML cell lines, primary cells exhibited sensitivity to CB-5083 that was similar to cell lines. Additionally, CB-5083 was highly active in 3 different cell line models of cytarabine resistance and primary cells from refractory AML patients. This suggests that CB-5083 may be effective for patients who are relapsed/refractory to conventional therapy. In vitro PD analyses demonstrated that CB-5083 rapidly triggered the accumulation of ubiquitin-conjugated proteins, activated the unfolded protein response (UPR), disrupted STAT5 signaling, reduced levels of key STAT5 targets including BCL-xL and PIM-2, and induced apoptosis. The pro-apoptotic effects of CB-5083 were associated with activation of the endoplasmic reticulum (ER) resident initiator caspase-4 and induction of the BH3-only protein NOXA, which has been previously demonstrated to be an important mediator of cell death induced by other agents that disrupt protein homeostasis. RNA sequencing (RNASeq) gene ontology (GO) analyses of MV4-11 and MOLM-13 AML cells following treatment with CB-5083 demonstrated that short-term treatment (6h) caused significant increases in multiple regulators of the unfolded protein response, protein biosynthesis, and other ubiquitin-related pathways (p<0.001). Results were confirmed by qRT-PCR. The in vivo anti-leukemic activity of CB-5083 was investigated in two different xenograft mouse models of AML: the FLT3-ITD+ MV4-11 cell line and APML HL-60 cells. Oral administration of CB-5083 (once daily, 4 days on, 3 days off) was well tolerated and induced disease regression in both xenograft models (p<0.01). In vivo PD studies demonstrated that administration of CB-5083 led to reduced AML cell proliferation (PCNA), to the induction of apoptosis (active caspase-3), and pathway inhibition as evidenced by poly-ubiquitin accumulation and elevated expression of CHOP, GRP78, and NOXA. PK-PD analyses demonstrated a correlation between the kinetics of the in vivo PD effects and drug exposure. Our collective preclinical data demonstrate that p97 inhibition is a very effective novel anti-leukemic strategy and support clinical investigation of CB-5083 in patients with relapsed/refractory AML. Disclosures LE Moigne: Cleave Biosciences: Employment. Rolfe:Cleave Biosciences: Employment. Djakovic:Cleave Biosciences: Employment. Anderson:Cleave Biosciences: Employment. Wustrow:Cleave Biosciences: Employment. Zhou:Cleave Biosciences: Employment. Wong:Cleave Biosciences: Employment. Sekeres:TetraLogic: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Carew:Boehringer Ingelheim: Research Funding.


Author(s):  
Chao Li

Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of inflammatory bowel disease (IBD) including Crohn&rsquo;s disease. Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways such as senescence and autophagy are introduced. Recent advances in the understanding of the epigenetic regulation of UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.


2020 ◽  
Author(s):  
Francesca De Lorenzo ◽  
Patrick Lüningschrör ◽  
Jinhan Nam ◽  
Federica Pilotto ◽  
Emilia Galli ◽  
...  

AbstractThe role of chronic endoplasmic reticulum (ER) stress in the pathophysiology of Amyotrophic lateral sclerosis (ALS), as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the ER resident protein cerebral dopamine neurotrophic factor (CDNF) in preclinical models of ALS harboring different genetic mutations. We identify that intracerebroventricular (i.c.v.) administration of CDNF significantly halts the progression of the disease and improves motor behavior in TDP43-M337V and SOD1-G93A rodent models of ALS. CDNF rescues motor neurons (MNs) in vitro and in vivo from ER stress associated cell death and its beneficial effect is independent of genetic disease etiology. Notably, CDNF regulates the unfolded protein response (UPR) initiated by transducers IRE1α, PERK, and ATF6, thereby enhancing MN survival. Thus, CDNF holds great promise for the design of new rational treatments for ALS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ying Fan ◽  
Jiaoqi Cheng ◽  
Huihong Zeng ◽  
Lijian Shao

Senescent cells with replicative arrest can be generated during genotoxic, oxidative, and oncogenic stress. Long-term retention of senescent cells in the body, which is attributed to highly expressed BCL-family proteins, chronically damages tissues mainly through a senescence-associated secretory phenotype (SASP). It has been documented that accumulation of senescent cells contributes to chronic diseases and aging-related diseases. Despite the fact that no unique marker is available to identify senescent cells, increased p16INK4a expression has long been used as an in vitro and in vivo marker of senescent cells. We reviewed five existing p16INK4a reporter mouse models to detect, isolate, and deplete senescent cells. Senescent cells express high levels of anti-apoptotic and pro-apoptotic genes compared to normal cells. Thus, disrupting the balance between anti-apoptotic and pro-apoptotic gene expression, such as ABT-263 and ABT-737, can activate the apoptotic signaling pathway and remove senescent cells. Mitochondrial abnormalities in senescent cells were also discussed, for example mitochondrial DNA mutation accumulation, dysfunctional mitophagy, and mitochondrial unfolded protein response (mtUPR). The mitochondrial-targeted tamoxifen, MitoTam, can efficiently remove senescent cells due to its inhibition of respiratory complex I and low expression of adenine nucleotide translocase-2 (ANT2) in senescent cells. Therefore, senescent cells can be removed by various strategies, which delays chronic and aging-related diseases and enhances lifespan and healthy conditions in the body.


2021 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Chao Li

Endoplasmic reticulum (ER) stress triggers a series of signaling and transcriptional events termed the unfolded protein response (UPR). Severe ER stress is associated with the development of fibrosis in different organs, including lung, liver, kidney, heart, and intestine. ER stress is an essential response of epithelial and immune cells in the pathogenesis of Inflammatory Bowel Disease (IBD), including Crohn’s disease (CD). Intestinal epithelial cells are susceptible to ER stress-mediated damage due to secretion of a large amount of proteins that are involved in mucosal defense. In other cells, ER stress is linked to myofibroblast activation, extracellular matrix production, macrophage polarization, and immune cell differentiation. This review focuses on the role of the UPR in the pathogenesis in IBD from an immunologic perspective. The roles of macrophage and mesenchymal cells in the UPR from in vitro and in vivo animal models are discussed. The links between ER stress and other signaling pathways, such as senescence and autophagy, are introduced. Recent advances in the understanding of the epigenetic regulation of the UPR signaling are also updated here. The future directions of development of the UPR research and therapeutic strategies to manipulate ER stress levels are also reviewed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ruxandra Dafinca ◽  
Paola Barbagallo ◽  
Kevin Talbot

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the motor system with complex determinants, including genetic and non-genetic factors. Despite this heterogeneity, a key pathological signature is the mislocalization and aggregation of specific proteins in the cytoplasm, suggesting that convergent pathogenic mechanisms focusing on disturbances in proteostasis are important in ALS. In addition, many cellular processes have been identified as potentially contributing to disease initiation and progression, such as defects in axonal transport, autophagy, nucleocytoplasmic transport, ER stress, calcium metabolism, the unfolded protein response and mitochondrial function. Here we review the evidence from in vitro and in vivo models of C9ORF72 and TDP-43-related ALS supporting a central role in pathogenesis for endoplasmic reticulum stress, which activates an unfolded protein response (UPR), and mitochondrial dysfunction. Disruption in the finely tuned signaling between the ER and mitochondria through calcium ions may be a crucial trigger of mitochondrial deficits and initiate an apoptotic signaling cascade, thus acting as a point of convergence for multiple upstream disturbances of cellular homeostasis and constituting a potentially important therapeutic target.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2495
Author(s):  
Cristine Alves da Costa ◽  
Wejdane El Manaa ◽  
Eric Duplan ◽  
Frédéric Checler

Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-19-SCI-19
Author(s):  
Randal J. Kaufman

Abstract Abstract SCI-19 Factor VIII is the protein deficient in the × chromosome-linked bleeding disorder hemophilia A. Previous studies demonstrated that FVIII expression in mammalian cells is limited due to protein misfolding of the newly synthesized polypeptide in the lumen of the endoplasmic reticulum (ER). Although oxidative stress can disrupt protein folding, how protein misfolding and oxidative stress impact each other has not been explored. We have analyzed expression of FVIII to elucidate the relationship between protein misfolding and oxidative stress. Accumulation of misfolded FVIII in the lumen of the ER activates the unfolded protein response (UPR), causes oxidative stress, and induces apoptosis in vitro and in vivo in mice. Strikingly, antioxidant treatment reduces UPR activation, oxidative stress, and apoptosis, and increases FVIII secretion in vitro and in vivo. The findings indicate that reactive oxygen species are a signal generated by misfolded protein in the ER that cause UPR activation and cell death. Genetic or chemical intervention to reduce reactive oxygen species improves protein folding and cell survival and may provide an avenue to treat and/or prevent diseases of protein misfolding. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document