scholarly journals The role of human milk oligosaccharides (HMOs) in the establishment and proliferation of Bifidobacterium infantis in the infant gut

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Riccardo G LoCascio ◽  
Gabriel Paulino ◽  
Samara L Freeman ◽  
Carlito B Lebrilla ◽  
J. Bruce German ◽  
...  
2020 ◽  
pp. 1-16
Author(s):  
L.W. Chia ◽  
M. Mank ◽  
B. Blijenberg ◽  
R.S. Bongers ◽  
K. van Limpt ◽  
...  

The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3052
Author(s):  
Lila S. Nolan ◽  
Jamie M. Rimer ◽  
Misty Good

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


2019 ◽  
Vol 22 (4) ◽  
pp. 330 ◽  
Author(s):  
Badriul Hegar ◽  
Yulianti Wibowo ◽  
Ray Wagiu Basrowi ◽  
Reza Gunadi Ranuh ◽  
Subianto Marto Sudarmo ◽  
...  

2016 ◽  
Vol 5 (8) ◽  
pp. e99 ◽  
Author(s):  
Nicholas J Andreas ◽  
Asmaa Al-Khalidi ◽  
Mustapha Jaiteh ◽  
Edward Clarke ◽  
Matthew J Hyde ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 804
Author(s):  
Laura Corona ◽  
Anna Lussu ◽  
Alice Bosco ◽  
Roberta Pintus ◽  
Flaminia Cesare Marincola ◽  
...  

Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.


2020 ◽  
Author(s):  
Michael Jakob Pichler ◽  
Chihaya Yamada ◽  
Bashar Shuoker ◽  
Maria Camila Alvarez-Silva ◽  
Aina Gotoh ◽  
...  

AbstractThe early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here we unveil the growth of Roseburia and Eubacterium members on human milk oligosaccharides (HMOs) using an unprecedented catabolic apparatus. The described HMO pathways and additional glycan utilization loci confer co-growth with Akkermansia muciniphilia via cross-feeding and access to mucin O-glycans. Strikingly, both, HMO and xylooligosaccharide pathways, were active simultaneously attesting an adaptation to a mixed HMO-solid food diet. Analyses of 4599 Roseburia genomes underscored the preponderance of HMO pathways and highlighted different HMO utilization phylotypes. Our revelations provide a possible rationale for the early establishment and resilience of butyrate producing Clostridiales and expand the role of specific HMOs in the assembly of the early life microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva M. Moya-Gonzálvez ◽  
Antonio Rubio-del-Campo ◽  
Jesús Rodríguez-Díaz ◽  
María J. Yebra

AbstractMuch evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 2′,3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two β-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6′-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.


2012 ◽  
Vol 3 (3) ◽  
pp. 450S-455S ◽  
Author(s):  
Sharon M. Donovan ◽  
Mei Wang ◽  
Min Li ◽  
Iddo Friedberg ◽  
Scott L. Schwartz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document