Glycan-dependent viral infection in infants and the role of human milk oligosaccharides

2014 ◽  
Vol 7 ◽  
pp. 101-107 ◽  
Author(s):  
Sabrina Etzold ◽  
Lars Bode
Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3052
Author(s):  
Lila S. Nolan ◽  
Jamie M. Rimer ◽  
Misty Good

Preterm infants are a vulnerable population at risk of intestinal dysbiosis. The newborn microbiome is dominated by Bifidobacterium species, though abnormal microbial colonization can occur by exogenous factors such as mode of delivery, formula feeding, and exposure to antibiotics. Therefore, preterm infants are predisposed to sepsis and necrotizing enterocolitis (NEC), a fatal gastrointestinal disorder, due to an impaired intestinal barrier, immature immunity, and a dysbiotic gut microbiome. Properties of human milk serve as protection in the prevention of NEC. Human milk oligosaccharides (HMOs) and the microbiome of breast milk are immunomodulatory components that provide intestinal homeostasis through regulation of the microbiome and protection of the intestinal barrier. Enteral probiotic supplements have been trialed to evaluate their impact on establishing intestinal homeostasis. Here, we review the protective role of HMOs, probiotics, and synbiotic combinations in protecting a vulnerable population from the pathogenic features associated with necrotizing enterocolitis.


2019 ◽  
Vol 22 (4) ◽  
pp. 330 ◽  
Author(s):  
Badriul Hegar ◽  
Yulianti Wibowo ◽  
Ray Wagiu Basrowi ◽  
Reza Gunadi Ranuh ◽  
Subianto Marto Sudarmo ◽  
...  

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Riccardo G LoCascio ◽  
Gabriel Paulino ◽  
Samara L Freeman ◽  
Carlito B Lebrilla ◽  
J. Bruce German ◽  
...  

2016 ◽  
Vol 5 (8) ◽  
pp. e99 ◽  
Author(s):  
Nicholas J Andreas ◽  
Asmaa Al-Khalidi ◽  
Mustapha Jaiteh ◽  
Edward Clarke ◽  
Matthew J Hyde ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 804
Author(s):  
Laura Corona ◽  
Anna Lussu ◽  
Alice Bosco ◽  
Roberta Pintus ◽  
Flaminia Cesare Marincola ◽  
...  

Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.


2020 ◽  
Author(s):  
Michael Jakob Pichler ◽  
Chihaya Yamada ◽  
Bashar Shuoker ◽  
Maria Camila Alvarez-Silva ◽  
Aina Gotoh ◽  
...  

AbstractThe early life human gut microbiota exerts life-long health effects on the host, but the mechanisms underpinning its assembly remain elusive. Particularly, the early colonization of Clostridiales from the Roseburia-Eubacterium group, associated with protection from colorectal cancer, immune- and metabolic disorders is enigmatic. Here we unveil the growth of Roseburia and Eubacterium members on human milk oligosaccharides (HMOs) using an unprecedented catabolic apparatus. The described HMO pathways and additional glycan utilization loci confer co-growth with Akkermansia muciniphilia via cross-feeding and access to mucin O-glycans. Strikingly, both, HMO and xylooligosaccharide pathways, were active simultaneously attesting an adaptation to a mixed HMO-solid food diet. Analyses of 4599 Roseburia genomes underscored the preponderance of HMO pathways and highlighted different HMO utilization phylotypes. Our revelations provide a possible rationale for the early establishment and resilience of butyrate producing Clostridiales and expand the role of specific HMOs in the assembly of the early life microbiota.


2012 ◽  
Vol 3 (3) ◽  
pp. 450S-455S ◽  
Author(s):  
Sharon M. Donovan ◽  
Mei Wang ◽  
Min Li ◽  
Iddo Friedberg ◽  
Scott L. Schwartz ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Keita Nishiyama ◽  
Yuji Yamamoto ◽  
Makoto Sugiyama ◽  
Takashi Takaki ◽  
Tadasu Urashima ◽  
...  

ABSTRACT Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. We studied the role of the extracellular sialidase (SiaBb2, 835 amino acids [aa]) from Bifidobacterium bifidum ATCC 15696 in mucosal surface adhesion and carbohydrate catabolism. Human milk oligosaccharides (HMOs) or porcine mucin oligosaccharides as the sole carbon source enhanced B. bifidum growth. This was impaired in a B. bifidum ATCC 15696 strain harboring a mutation in the siabb2 gene. Mutant cells in early to late exponential growth phase also showed decreased adhesion to human epithelial cells and porcine mucin relative to the wild-type strain. These results indicate that SiaBb2 removes sialic acid from HMOs and mucin for metabolic purposes and may promote bifidobacterial adhesion to the mucosal surface. To further characterize SiaBb2-mediated bacterial adhesion, we examined the binding of His-tagged recombinant SiaBb2 peptide to colonic mucins and found that His-SiaBb2 as well as a conserved sialidase domain peptide (aa 187 to 553, His-Sia) bound to porcine mucin and murine colonic sections. A glycoarray assay revealed that His-Sia bound to the α2,6-linked but not to the α2,3-linked sialic acid on sialyloligosaccharide and blood type A antigen [GalNAcα1-3(Fucα1-2)Galβ] at the nonreducing termini of sugar chains. These results suggest that the sialidase domain of SiaBb2 is responsible for this interaction and that the protein recognizes two distinct carbohydrate structures. Thus, SiaBb2 may be involved in Bifidobacterium-mucosal surface interactions as well as in the assimilation of a variety of sialylated carbohydrates. IMPORTANCE Adhesion to the host mucosal surface and carbohydrate assimilation are important for bifidobacterium colonization and survival in the host gastrointestinal tract. In this study, we investigated the mechanistic basis for B. bifidum extracellular sialidase (SiaBb2)-mediated adhesion. SiaBb2 cleaved sialyl-human milk oligosaccharides and mucin glycans to produce oligosaccharides that supported B. bifidum growth. Moreover, SiaBb2 enhanced B. bifidum adhesion to mucosal surfaces via specific interactions with the α2,6 linkage of sialyloligosaccharide and blood type A antigen on mucin carbohydrates. These findings provide insight into the bifunctional role of SiaBb2 and the adhesion properties of B. bifidum strains. IMPORTANCE Adhesion to the host mucosal surface and carbohydrate assimilation are important for bifidobacterium colonization and survival in the host gastrointestinal tract. In this study, we investigated the mechanistic basis for B. bifidum extracellular sialidase (SiaBb2)-mediated adhesion. SiaBb2 cleaved sialyl-human milk oligosaccharides and mucin glycans to produce oligosaccharides that supported B. bifidum growth. Moreover, SiaBb2 enhanced B. bifidum adhesion to mucosal surfaces via specific interactions with the α2,6 linkage of sialyloligosaccharide and blood type A antigen on mucin carbohydrates. These findings provide insight into the bifunctional role of SiaBb2 and the adhesion properties of B. bifidum strains.


Sign in / Sign up

Export Citation Format

Share Document