scholarly journals The partitioning of symbionts effects on host resource acquisition and developmental plasticity

2020 ◽  
Author(s):  
Robin Guilhot ◽  
Anne Xuéreb ◽  
Simon Fellous

AbstractMany symbionts provide nutrients to their host and/or affect its phenotypic plasticity. Such symbiont effects on host resource acquisition and allocation are often simultaneous and difficult to disentangle. Here we partitioned symbiont effects on host resource acquisition and allocation using a new framework based on the analysis of a well-established trade-off between host fitness components. This framework was used to analyze the effect of symbiotic yeast on the larval development of Drosophila larvae in field-realistic conditions. The screening of eighteen yeast fresh isolates showed they had similar effects on the resource acquisition in Drosophila melanogaster, D. simulans and D. suzukii but species-specific effects on resource allocation between either larval development speed or adult size. These differences shed light on the ecology of Drosophila flies and illustrate why distinguishing between these qualitatively different effects of microorganisms on hosts is essential to understand and predict symbiosis evolution.

2019 ◽  
Author(s):  
Robin Guilhot ◽  
Antoine Rombaut ◽  
Anne Xuéreb ◽  
Kate Howell ◽  
Simon Fellous

AbstractEnvironmentally acquired microbial symbionts could contribute to host adaptation to local adaptation like vertically transmitted symbionts do. This scenario necessitates symbionts to have different effects in different environments. In Drosophila melanogaster, communities of extracellular bacterial symbionts vary largely among environments, which could be due to variable effects on phenotype. We investigated this idea with four bacterial strains isolated from the feces of a D. melanogaster lab strain, and tested their effects in two environments: the environment of origin (i.e. the laboratory medium) and a new one (i.e. fresh fruit with live yeast). All bacterial effects on larval and adult traits differed among environments, ranging from very beneficial to marginally deleterious. The joint analysis of larval development speed and adult size further suggests bacteria would affect developmental plasticity more than resource acquisition in males. The context-dependent effects of bacteria we observed, and its underlying mechanisms, sheds light on how environmentally acquired symbionts may contribute to host evolution.


2021 ◽  
Author(s):  
Gerardo I. Zardi ◽  
Katy Rebecca Nicastro ◽  
Christopher D. McQuaid ◽  
Monique de Jager ◽  
Johan van de Koppel ◽  
...  

2021 ◽  
Vol 30 (1) ◽  
pp. 55-60
Author(s):  
Julia Fischer

Studies of nonhuman primate communication are often motivated by the desire to shed light on the evolution of speech. In contrast to human speech, the vocal repertoires of nonhuman primates are evolutionarily highly conserved. Within species-specific constraints, calls may vary in relation to the internal state of the caller or social experience. Receivers can use signalers’ calls to predict upcoming events or behavioral dispositions. Yet nonhuman primates do not appear to express or comprehend communicative or informative intent. Signalers are sensitive to the relation between their own actions and receivers’ responses, and thus, signaling behavior can be conceived as goal directed. Receivers’ ability to integrate information from multiple sources renders the system flexible and powerful. Researchers who take a linguistic or biological perspective on nonhuman primate communication should be aware of the strengths and limitations of their approaches. Both benefit from a focus on the mechanisms that underpin signaling and responses to signals.


2019 ◽  
Vol 35 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Hamza Issifu ◽  
George K. D. Ametsitsi ◽  
Lana J. de Vries ◽  
Gloria Djaney Djagbletey ◽  
Stephen Adu-Bredu ◽  
...  

AbstractDifferential tree seedling recruitment across forest-savanna ecotones is poorly understood, but hypothesized to be influenced by vegetation cover and associated factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of Ghana, we assessed performance and root allocation of 864 seedlings for two forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya senegalensis and Terminalia macroptera) species in savanna woodland, closed-woodland and forest. Herbaceous vegetation biomass was significantly higher in savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence expected fire intensities, while some soil properties were improved in forest. Regardless, seedling survival declined significantly in the first-year dry-season for all species with huge declines for the forest species (50% vs 6% for Khaya and 16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in savanna woodland. However, best performance for savanna Khaya was in forest, but in savanna woodland for savanna Terminalia which also had the highest biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative to savanna and forest Khaya respectively. Our results demonstrate that tree cover variation has species-specific effects on tree seedling recruitment which is related to root storage functions.


2017 ◽  
Vol 8 (10) ◽  
pp. 3587-3600 ◽  
Author(s):  
Linlin Wang ◽  
Lujun Hu ◽  
Qi Xu ◽  
Tian Jiang ◽  
Shuguang Fang ◽  
...  

Edible bifidobacteria exerted species-specific effects in relieving constipation.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152113 ◽  
Author(s):  
Ana Z. Gonçalves ◽  
Rafael S. Oliveira ◽  
Paulo S. Oliveira ◽  
Gustavo Q. Romero

1994 ◽  
Vol 22 (6) ◽  
pp. 454-461
Author(s):  
Marga Oortgiesen ◽  
Ruud Zwart ◽  
Henk P.M. Vijverberg

The effects of nitromethylene heterocycle (NMH) insecticides on subtypes of nicotinic acetylcholine (nACh) receptors were investigated in locust thoracic ganglion neurons, mouse N1E-115 neuroblastoma cells, and mouse BC3H1 muscle cells by using electrophysiological techniques. In locust neurons, all of the six NMH insecticides tested induced transient inward currents resembling nicotinic ACh-induced inward currents, while, in the continued presence of the NMH compounds, the ACh-induced inward current was blocked. The amplitude of the inward current and the blocking effects of the NMH insecticides were enhanced by concentrations between 0.1 and 10μM. Cross-desensitisation with the ACh-induced inward current confirmed that the NMH-induced inward current was governed by the activation of nACh receptors. Mammalian endplate type nACh receptors in BC3H1 cells and mammalian neuronal type nACh receptors in N1E-115 cells were much less sensitive to the NMH insecticides than the locust neuronal nACh receptors. At a concentration of 10μM, which blocked 80–100% of the ACh-induced inward current in locust neurons, NMH insecticides only partially blocked the ACh-induced inward currents mediated by the two subtypes of mammalian nACh receptors. NMH insecticides also failed to induce significant agonist effects in the mammalian cells at this concentration. The results provide a possible explanation for the selectively greater toxicity of NMH insecticides to insects than to vertebrates, at the level of nACh receptor subtypes and, hence, demonstrate that this in vitro approach is valuable for the investigation of species-specific interactions of compounds at their target site.


Author(s):  
Carolin Boehlke ◽  
Sabrina Schuster ◽  
Lucas Kauthe ◽  
Oliver Zierau ◽  
Christian Hannig

AbstractAsian and African elephants show morphological adaptations to their ecological niche including the oral cavity. Variety and preferences of forage plants differ between both herbivorous elephant species. Diet can affect salivary enzymes. Asian elephants were shown to have a higher salivary amylase activity than African elephants. Species-specific differences were presumed to be influenced by feeding during collection procedure. This study aimed to determine the influence of feeding on enzyme activities in saliva of both elephant species to differentiate from species-specific effects. Additionally, season and housing conditions on salivary enzyme activities in non-fed elephants of both species were investigated. Salivary amylase (sAA), lysozyme (sLYS) and peroxidase (sPOD) activity were measured photometrically or fluorometrically. Results of this study reinforce previous observations of higher basic sAA activity in Asian elephants compared to African elephants. Salivary LYS and sPOD activity showed neither species-specific nor housing-specific differences. Independent from season, most elephants of both species revealed a lack of or low sPOD activity. Feeding caused a temporary decrease of sAA, sLYS and sPOD activity in both elephant species kept in four of eight tested zoos. Furthermore, sAA activity in Asian elephants was higher and sLYS activity lower in Spring than in Autumn. This study summarizes that sAA and sLYS are components of Asian and African elephant saliva in an active conformation in contrast to sPOD. Diet varying between season and zoos might influence sAA and sLYS activities primarily in Asian elephants but temporary low effects suggest sufficient buffer capacity of elephant saliva of both species.


Sign in / Sign up

Export Citation Format

Share Document