scholarly journals Nutritional influences on enzyme activities in saliva of Asian and African elephants

Author(s):  
Carolin Boehlke ◽  
Sabrina Schuster ◽  
Lucas Kauthe ◽  
Oliver Zierau ◽  
Christian Hannig

AbstractAsian and African elephants show morphological adaptations to their ecological niche including the oral cavity. Variety and preferences of forage plants differ between both herbivorous elephant species. Diet can affect salivary enzymes. Asian elephants were shown to have a higher salivary amylase activity than African elephants. Species-specific differences were presumed to be influenced by feeding during collection procedure. This study aimed to determine the influence of feeding on enzyme activities in saliva of both elephant species to differentiate from species-specific effects. Additionally, season and housing conditions on salivary enzyme activities in non-fed elephants of both species were investigated. Salivary amylase (sAA), lysozyme (sLYS) and peroxidase (sPOD) activity were measured photometrically or fluorometrically. Results of this study reinforce previous observations of higher basic sAA activity in Asian elephants compared to African elephants. Salivary LYS and sPOD activity showed neither species-specific nor housing-specific differences. Independent from season, most elephants of both species revealed a lack of or low sPOD activity. Feeding caused a temporary decrease of sAA, sLYS and sPOD activity in both elephant species kept in four of eight tested zoos. Furthermore, sAA activity in Asian elephants was higher and sLYS activity lower in Spring than in Autumn. This study summarizes that sAA and sLYS are components of Asian and African elephant saliva in an active conformation in contrast to sPOD. Diet varying between season and zoos might influence sAA and sLYS activities primarily in Asian elephants but temporary low effects suggest sufficient buffer capacity of elephant saliva of both species.

2002 ◽  
Vol 80 (6) ◽  
pp. 745-755 ◽  
Author(s):  
Kyra J Cowan ◽  
Kenneth B Storey

The effects of 300 mM urea or 300 mM KCl on the maximal activities of 25 enzymes of intermediary metabolism were assessed in extracts of liver and muscle from spadefoot toads (Scaphiopus couchii), leopard frogs (Rana pipiens), and rats to assess their sensitivity to these osmolytes. During estivation, toads can lose ~50% of total body water, and urea, which is known for its action as a protein denaturant, accumulates to 200–300 mM. The data show that the maximal activities of toad liver enzymes were not affected when assayed in the presence of 300 mM urea in vitro whereas urea inhibited the activities of seven enzymes in frog and 11 enzymes in rat liver. High KCl affected 12 or 13 enzymes in liver of each species causing inhibition in eight or nine cases each, and for frog and rat enzymes, inhibition was frequently more pronounced than for urea. Both urea and KCl affected enzyme activities in muscle extracts of all three species, but whereas their effects were largely negative for frog and rat enzymes, the enzymes affected by urea or KCl in toad muscle were primarily activated by these osmolytes (six out of nine enzymes affected by urea and eight of 15 enzymes affected by KCl). Urea, KCl, and polyethylene glycol (a protein crowding agent) also had species-specific effects on the dissociation constant (Ka) for cAMP of protein kinase A. The data suggest that the accumulation of urea by water-stressed anurans not only contributes to minimizing cell volume reduction, but by doing so also limits the increase in intracellular ionic strength that occurs and thereby helps to minimize the potential inhibitory effects of high salts on metabolic enzymes.Key words: estivation, desiccation, urea, polyethylene glycol, spadefoot toad, leopard frog.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mia M. Keady ◽  
Natalia Prado ◽  
Haw Chuan Lim ◽  
Janine Brown ◽  
Steve Paris ◽  
...  

Abstract Background The gut microbiome is important to immune health, metabolism, and hormone regulation. Understanding host–microbiome relationships in captive animals may lead to mediating long term health issues common in captive animals. For instance, zoo managed African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) experience low reproductive rates, high body condition, and gastrointestinal (GI) issues. We leveraged an extensive collection of fecal samples and health records from the Elephant Welfare Study conducted across North American zoos in 2012 to examine the link between gut microbiota and clinical health issues, reproductive hormones, and metabolic hormones in captive elephants. We quantified gut microbiomes of 69 African and 48 Asian elephants from across 50 zoos using Illumina sequencing of the 16S rRNA bacterial gene. Results Elephant species differed in microbiome structure, with African elephants having lower bacterial richness and dissimilar bacterial composition from Asian elephants. In both species, bacterial composition was strongly influenced by zoo facility. Bacterial richness was lower in African elephants with recent GI issues, and richness was positively correlated with metabolic hormone total triiodothyronine (total T3) in Asian elephants. We found species-specific associations between gut microbiome composition and hormones: Asian elephant gut microbiome composition was linked to total T3 and free thyroxine (free T4), while fecal glucocorticoid metabolites (FGM) were linked to African elephant gut microbiome composition. We identified many relationships between bacterial relative abundances and hormone concentrations, including Prevotella spp., Treponema spp., and Akkermansia spp. Conclusions We present a comprehensive assessment of relationships between the gut microbiome, host species, environment, clinical health issues, and the endocrine system in captive elephants. Our results highlight the combined significance of host species-specific regulation and environmental effects on the gut microbiome between two elephant species and across 50 zoo facilities. We provide evidence of clinical health issues, reproductive hormones, and metabolic hormones associated with the gut microbiome structure of captive elephants. Our findings establish the groundwork for future studies to investigate bacterial function or develop tools (e.g., prebiotics, probiotics, dietary manipulations) suitable for conservation and zoo management.


2021 ◽  
Author(s):  
Gerardo I. Zardi ◽  
Katy Rebecca Nicastro ◽  
Christopher D. McQuaid ◽  
Monique de Jager ◽  
Johan van de Koppel ◽  
...  

2019 ◽  
Vol 35 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Hamza Issifu ◽  
George K. D. Ametsitsi ◽  
Lana J. de Vries ◽  
Gloria Djaney Djagbletey ◽  
Stephen Adu-Bredu ◽  
...  

AbstractDifferential tree seedling recruitment across forest-savanna ecotones is poorly understood, but hypothesized to be influenced by vegetation cover and associated factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of Ghana, we assessed performance and root allocation of 864 seedlings for two forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya senegalensis and Terminalia macroptera) species in savanna woodland, closed-woodland and forest. Herbaceous vegetation biomass was significantly higher in savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence expected fire intensities, while some soil properties were improved in forest. Regardless, seedling survival declined significantly in the first-year dry-season for all species with huge declines for the forest species (50% vs 6% for Khaya and 16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in savanna woodland. However, best performance for savanna Khaya was in forest, but in savanna woodland for savanna Terminalia which also had the highest biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative to savanna and forest Khaya respectively. Our results demonstrate that tree cover variation has species-specific effects on tree seedling recruitment which is related to root storage functions.


2017 ◽  
Vol 8 (10) ◽  
pp. 3587-3600 ◽  
Author(s):  
Linlin Wang ◽  
Lujun Hu ◽  
Qi Xu ◽  
Tian Jiang ◽  
Shuguang Fang ◽  
...  

Edible bifidobacteria exerted species-specific effects in relieving constipation.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152113 ◽  
Author(s):  
Ana Z. Gonçalves ◽  
Rafael S. Oliveira ◽  
Paulo S. Oliveira ◽  
Gustavo Q. Romero

1994 ◽  
Vol 22 (6) ◽  
pp. 454-461
Author(s):  
Marga Oortgiesen ◽  
Ruud Zwart ◽  
Henk P.M. Vijverberg

The effects of nitromethylene heterocycle (NMH) insecticides on subtypes of nicotinic acetylcholine (nACh) receptors were investigated in locust thoracic ganglion neurons, mouse N1E-115 neuroblastoma cells, and mouse BC3H1 muscle cells by using electrophysiological techniques. In locust neurons, all of the six NMH insecticides tested induced transient inward currents resembling nicotinic ACh-induced inward currents, while, in the continued presence of the NMH compounds, the ACh-induced inward current was blocked. The amplitude of the inward current and the blocking effects of the NMH insecticides were enhanced by concentrations between 0.1 and 10μM. Cross-desensitisation with the ACh-induced inward current confirmed that the NMH-induced inward current was governed by the activation of nACh receptors. Mammalian endplate type nACh receptors in BC3H1 cells and mammalian neuronal type nACh receptors in N1E-115 cells were much less sensitive to the NMH insecticides than the locust neuronal nACh receptors. At a concentration of 10μM, which blocked 80–100% of the ACh-induced inward current in locust neurons, NMH insecticides only partially blocked the ACh-induced inward currents mediated by the two subtypes of mammalian nACh receptors. NMH insecticides also failed to induce significant agonist effects in the mammalian cells at this concentration. The results provide a possible explanation for the selectively greater toxicity of NMH insecticides to insects than to vertebrates, at the level of nACh receptor subtypes and, hence, demonstrate that this in vitro approach is valuable for the investigation of species-specific interactions of compounds at their target site.


Sign in / Sign up

Export Citation Format

Share Document