Soil Salinity Has Species-Specific Effects on the Growth and Nutrient Quality of Four Texas Grasses

2021 ◽  
Vol 77 ◽  
pp. 39-45
Author(s):  
Abigail R. Bell ◽  
Nicholas G. Smith
2021 ◽  
Author(s):  
Gerardo I. Zardi ◽  
Katy Rebecca Nicastro ◽  
Christopher D. McQuaid ◽  
Monique de Jager ◽  
Johan van de Koppel ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1399
Author(s):  
Stefania Toscano ◽  
Antonio Ferrante ◽  
Ferdinando Branca ◽  
Daniela Romano

Natural biostimulants obtained by plants are intensively used nowadays to improve crop yield and quality. The current study aimed to evaluate the effects of leaf extract of moringa (Moringa oleifera Lam.) (MLE) in modifying baby leaf characteristics of two genotypes of Brassica. The trial was started in October 2020 in a greenhouse; a cultivar of kale ‘Cavolo Laciniato Nero di Toscana’ (CL) and a Sicilian landrace of sprouting broccoli ‘Broccoli Nero’ (BN) were used. The plants, after 15, 30 and 40 days from sowing, were treated with MLE, while the control plants (C) with distilled water. Treatment with MLE modified morphological and nutritional value, but with different behavior in the two genotypes. In fact, in BN the treatment reduced the antioxidant activity (2.2-diphenyl-1-picrylhydrazyl (DPPH)) by 54%, while in CL the treatment increased this parameter by 40%. For the phenolic concentration and the sugar content the values recorded were significantly increased by MLE compared to control plants in CL, where in BN a significant reduction was registered. The CL plants treated with MLE showed a significant reduction (−70%) in nitrate content compared to the control plants; a negative effect was, instead, observed in BN, where the plants treated with moringa showed an increase of 60%. Results of this study showed how the foliar application of MLE was effective in improving various nutraceutical parameters, in particular in kale, because it appears to be a species-specific response.


2019 ◽  
Vol 35 (2) ◽  
pp. 74-82 ◽  
Author(s):  
Hamza Issifu ◽  
George K. D. Ametsitsi ◽  
Lana J. de Vries ◽  
Gloria Djaney Djagbletey ◽  
Stephen Adu-Bredu ◽  
...  

AbstractDifferential tree seedling recruitment across forest-savanna ecotones is poorly understood, but hypothesized to be influenced by vegetation cover and associated factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of Ghana, we assessed performance and root allocation of 864 seedlings for two forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya senegalensis and Terminalia macroptera) species in savanna woodland, closed-woodland and forest. Herbaceous vegetation biomass was significantly higher in savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence expected fire intensities, while some soil properties were improved in forest. Regardless, seedling survival declined significantly in the first-year dry-season for all species with huge declines for the forest species (50% vs 6% for Khaya and 16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in savanna woodland. However, best performance for savanna Khaya was in forest, but in savanna woodland for savanna Terminalia which also had the highest biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative to savanna and forest Khaya respectively. Our results demonstrate that tree cover variation has species-specific effects on tree seedling recruitment which is related to root storage functions.


2017 ◽  
Vol 8 (10) ◽  
pp. 3587-3600 ◽  
Author(s):  
Linlin Wang ◽  
Lujun Hu ◽  
Qi Xu ◽  
Tian Jiang ◽  
Shuguang Fang ◽  
...  

Edible bifidobacteria exerted species-specific effects in relieving constipation.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0152113 ◽  
Author(s):  
Ana Z. Gonçalves ◽  
Rafael S. Oliveira ◽  
Paulo S. Oliveira ◽  
Gustavo Q. Romero

1994 ◽  
Vol 22 (6) ◽  
pp. 454-461
Author(s):  
Marga Oortgiesen ◽  
Ruud Zwart ◽  
Henk P.M. Vijverberg

The effects of nitromethylene heterocycle (NMH) insecticides on subtypes of nicotinic acetylcholine (nACh) receptors were investigated in locust thoracic ganglion neurons, mouse N1E-115 neuroblastoma cells, and mouse BC3H1 muscle cells by using electrophysiological techniques. In locust neurons, all of the six NMH insecticides tested induced transient inward currents resembling nicotinic ACh-induced inward currents, while, in the continued presence of the NMH compounds, the ACh-induced inward current was blocked. The amplitude of the inward current and the blocking effects of the NMH insecticides were enhanced by concentrations between 0.1 and 10μM. Cross-desensitisation with the ACh-induced inward current confirmed that the NMH-induced inward current was governed by the activation of nACh receptors. Mammalian endplate type nACh receptors in BC3H1 cells and mammalian neuronal type nACh receptors in N1E-115 cells were much less sensitive to the NMH insecticides than the locust neuronal nACh receptors. At a concentration of 10μM, which blocked 80–100% of the ACh-induced inward current in locust neurons, NMH insecticides only partially blocked the ACh-induced inward currents mediated by the two subtypes of mammalian nACh receptors. NMH insecticides also failed to induce significant agonist effects in the mammalian cells at this concentration. The results provide a possible explanation for the selectively greater toxicity of NMH insecticides to insects than to vertebrates, at the level of nACh receptor subtypes and, hence, demonstrate that this in vitro approach is valuable for the investigation of species-specific interactions of compounds at their target site.


Author(s):  
Carolin Boehlke ◽  
Sabrina Schuster ◽  
Lucas Kauthe ◽  
Oliver Zierau ◽  
Christian Hannig

AbstractAsian and African elephants show morphological adaptations to their ecological niche including the oral cavity. Variety and preferences of forage plants differ between both herbivorous elephant species. Diet can affect salivary enzymes. Asian elephants were shown to have a higher salivary amylase activity than African elephants. Species-specific differences were presumed to be influenced by feeding during collection procedure. This study aimed to determine the influence of feeding on enzyme activities in saliva of both elephant species to differentiate from species-specific effects. Additionally, season and housing conditions on salivary enzyme activities in non-fed elephants of both species were investigated. Salivary amylase (sAA), lysozyme (sLYS) and peroxidase (sPOD) activity were measured photometrically or fluorometrically. Results of this study reinforce previous observations of higher basic sAA activity in Asian elephants compared to African elephants. Salivary LYS and sPOD activity showed neither species-specific nor housing-specific differences. Independent from season, most elephants of both species revealed a lack of or low sPOD activity. Feeding caused a temporary decrease of sAA, sLYS and sPOD activity in both elephant species kept in four of eight tested zoos. Furthermore, sAA activity in Asian elephants was higher and sLYS activity lower in Spring than in Autumn. This study summarizes that sAA and sLYS are components of Asian and African elephant saliva in an active conformation in contrast to sPOD. Diet varying between season and zoos might influence sAA and sLYS activities primarily in Asian elephants but temporary low effects suggest sufficient buffer capacity of elephant saliva of both species.


PEDIATRICS ◽  
1986 ◽  
Vol 77 (4) ◽  
pp. 443-450
Author(s):  
Karl C. K. Kuban ◽  
Alan Leviton ◽  
Kalpathy S. Krishnamoorthy ◽  
Elizabeth R. Brown ◽  
Rita Littlewood Teele ◽  
...  

We enrolled 280 intubated babies with birth weights of less than 1,751 g in a double-blind randomized prospective clinical trial to evaluate whether phenobarbital influences the likelihood of developing subependymal-intraventricular-intraparenchymal hemorrhage. Phenobarbital was associated with an increased risk of developing any subependymal-intraventricular-intraparenchymal hemorrhage and was not associated with a diminished risk of either severe hemorrhage or germinal matrix hemorrhage. This increased risk was apparent even after we considered the influence of phenobarbital levels, timing of phenobarbital administrations, institutional differences, quality of ultrasound scans, gestational age- and birth weight-specific effects, ascertainment bias, and other possible confounders of phenobarbital administration.


Sign in / Sign up

Export Citation Format

Share Document