scholarly journals Medial Orbitofrontal Cortex Regulates Instrumental Conditioned Punishment, but not Pavlovian Conditioned Fear

Author(s):  
Cassandra Ma ◽  
Philip Jean-Richard-dit-Bressel ◽  
Stephanie Roughley ◽  
Bryce Vissel ◽  
Bernard W. Balleine ◽  
...  

AbstractBidirectionally aberrant medial orbitofrontal cortical (mOFC) activity has been consistently linked with compulsion and compulsive disorders. Although rodent studies have established a causal link between mOFC excitation and compulsive-like actions, no such link has been made with mOFC inhibition. Here we use excitotoxic lesions of mOFC to investigate its role in sensitivity to punishment; a core characteristic of many compulsive disorders. In our first experiment, we demonstrated that mOFC lesions prevented instrumental conditioned punishment learning in a manner that could not be attributed to differences in Pavlovian conditioned fear. We then showed that increasing the frequency of punishing outcomes allowed mOFC-lesioned animals to overcome their initial deficit. Our second experiment demonstrated that the retrieval of instrumental punishment is also mOFC-dependent, as mOFC lesions prevented the extended retrieval of punishment contingencies relative to shams. In contrast, mOFC lesions did not prevent the re-acquisition of conditioned punishment that was learned prior to lesions being administered. Together, these results reveal that the mOFC does indeed regulate punishment learning and retrieval in a manner that is disassociated from any role in Pavlovian fear learning. These results imply that aberrant mOFC activity may contribute to the punishment insensitivity that is observed across multiple compulsive disorders.

Author(s):  
Cassandra Ma ◽  
Philip Jean-Richard-dit-Bressel ◽  
Stephanie Roughley ◽  
Bryce Vissel ◽  
Bernard W Balleine ◽  
...  

Abstract Bidirectionally aberrant medial orbitofrontal cortical (mOFC) activity has been consistently linked with compulsive disorders and related behaviors. Although rodent studies have established a causal link between mOFC excitation and compulsive-like actions, no such link has been made with mOFC inhibition. Here we use excitotoxic lesions of mOFC to investigate its role in sensitivity to punishment; a core characteristic of many compulsive disorders. In our first experiment, we demonstrated that mOFC lesions prevented rats from learning to avoid a lever that was punished with a stimulus that co-terminated with footshock. Our second experiment demonstrated that retrieval of punishment learning is also somewhat mOFC-dependent, as lesions prevented the extended retrieval of punishment contingencies relative to shams. In contrast, mOFC lesions did not prevent rats from re-acquiring the ability to avoid a punished lever when it was learned prior to lesions being administered. In both experiments, Pavlovian fear conditioning to the stimulus was intact for all animals. Together, these results reveal that the mOFC regulates punishment learning and retrieval in a manner that is separate from any role in Pavlovian fear conditioning. These results imply that aberrant mOFC activity may contribute to the punishment insensitivity that is observed across multiple compulsive disorders.


2020 ◽  
Author(s):  
Karly Turner ◽  
Bernard Balleine ◽  
Laura Bradfield

Abnormal orbitofrontal cortex (OFC) activity is one of the most common findings from neuroimaging studies of individuals with compulsive disorders such as substance use disorder and obsessive-compulsive disorder. The nature of this abnormality is complex however, with some studies reporting the OFC to be over-active in compulsive individuals relative to controls, whereas other studies report it being under-active, and a further set of studies reporting OFC abnormality in both directions within the same individuals. The OFC has been implicated in a broad range of cognitive processes such as decision-making and goal-directed action. OFC dysfunction could impair these processes leading to the kinds of cognitive/behavioural deficits observed in individuals with compulsive disorders. One such deficit that could arise as a result of OFC dysfunction is an altered sensitivity to punishment, which is one of the core characteristics displayed by individuals across multiple types of compulsive disorders. It is, therefore, the aim of the current review to assess the evidence implicating the OFC in adaptation to punishment and to attempt to identify the critical factors determining this relationship. We distil from this analysis some guidelines for future studies attempting to determine the precise role of the OFC in punishment.


2021 ◽  
Vol 11 (4) ◽  
pp. 423
Author(s):  
Markus Fendt ◽  
Claudia Paulina Gonzalez-Guerrero ◽  
Evelyn Kahl

Rats can acquire fear by observing conspecifics that express fear in the presence of conditioned fear stimuli. This process is called observational fear learning and is based on the social transmission of the demonstrator rat’s emotion and the induction of an empathy-like or anxiety state in the observer. The aim of the present study was to investigate the role of trait anxiety and ultrasonic vocalization in observational fear learning. Two experiments with male Wistar rats were performed. In the first experiment, trait anxiety was assessed in a light–dark box test before the rats were submitted to the observational fear learning procedure. In the second experiment, ultrasonic vocalization was recorded throughout the whole observational fear learning procedure, and 22 kHz and 50 kHz calls were analyzed. The results of our study show that trait anxiety differently affects direct fear learning and observational fear learning. Direct fear learning was more pronounced with higher trait anxiety, while observational fear learning was the best with a medium-level of trait anxiety. There were no indications in the present study that ultrasonic vocalization, especially emission of 22 kHz calls, but also 50 kHz calls, are critical for observational fear learning.


Author(s):  
Julia Reinhard ◽  
Anna Slyschak ◽  
Miriam A. Schiele ◽  
Marta Andreatta ◽  
Katharina Kneer ◽  
...  

AbstractThe aim of the study was to investigate age-related differences in fear learning and generalization in healthy children and adolescents (n = 133), aged 8–17 years, using an aversive discriminative fear conditioning and generalization paradigm adapted from Lau et al. (2008). In the current task, participants underwent 24 trials of discriminative conditioning of two female faces with neutral facial expressions, with (CS+) or without (CS−) a 95-dB loud female scream, presented simultaneously with a fearful facial expression (US). The discriminative conditioning was followed by 72 generalization trials (12 CS+, 12 GS1, 12 GS2, 12 GS3, 12 GS4, and 12 CS−): four generalization stimuli depicting gradual morphs from CS+ to CS− in 20%-steps were created for the generalization phases. We hypothesized that generalization in children and adolescents is negatively correlated with age. The subjective ratings of valence, arousal, and US expectancy (the probability of an aversive noise following each stimulus), as well as skin conductance responses (SCRs) were measured. Repeated-measures ANOVAs on ratings and SCR amplitudes were calculated with the within-subject factors stimulus type (CS+, CS−, GS1-4) and phase (Pre-Acquisition, Acquisition 1, Acquisition 2, Generalization 1, Generalization 2). To analyze the modulatory role of age, we additionally calculated ANCOVAs considering age as covariate. Results indicated that (1) subjective and physiological responses were generally lower with increasing age irrespective to the stimulus quality, and (2) stimulus discrimination improved with increasing age paralleled by reduced overgeneralization in older individuals. Longitudinal follow-up studies are required to analyze fear generalization with regard to brain maturational aspects and clarify whether overgeneralization of conditioned fear promotes the development of anxiety disorders or vice versa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthew R. Baker ◽  
Ryan Y. Wong

AbstractLearning to anticipate potentially dangerous contexts is an adaptive behavioral response to coping with stressors. An animal’s stress coping style (e.g. proactive–reactive axis) is known to influence how it encodes salient events. However, the neural and molecular mechanisms underlying these stress coping style differences in learning are unknown. Further, while a number of neuroplasticity-related genes have been associated with alternative stress coping styles, it is unclear if these genes may bias the development of conditioned behavioral responses to stressful stimuli, and if so, which brain regions are involved. Here, we trained adult zebrafish to associate a naturally aversive olfactory cue with a given context. Next, we investigated if expression of two neural plasticity and neurotransmission-related genes (npas4a and gabbr1a) were associated with the contextual fear conditioning differences between proactive and reactive stress coping styles. Reactive zebrafish developed a stronger conditioned fear response and showed significantly higher npas4a expression in the medial and lateral zones of the dorsal telencephalon (Dm, Dl), and the supracommissural nucleus of the ventral telencephalon (Vs). Our findings suggest that the expression of activity-dependent genes like npas4a may be differentially expressed across several interconnected forebrain regions in response to fearful stimuli and promote biases in fear learning among different stress coping styles.


2020 ◽  
Author(s):  
Christoph Fraenz ◽  
Dorothea Metzen ◽  
Christian J. Merz ◽  
Helene Selpien ◽  
Nikolai Axmacher ◽  
...  

AbstractResearch has shown that fear acquisition, in reaction to potentially harmful stimuli or situations, is characterized by pronounced interindividual differences. It is likely that such differences are evoked by variability in the macro- and microstructural properties of brain regions involved in the processing of threat or safety signals from the environment. Indeed, previous studies have shown that the strength of conditioned fear reactions is associated with the cortical thickness or volume of various brain regions. However, respective studies were exclusively targeted at single brain regions instead of whole brain networks. Here, we tested 60 young and healthy individuals in a differential fear conditioning paradigm while they underwent fMRI scanning. In addition, we acquired T1-weighted and multi-shell diffusion-weighted images prior to testing. We used task-based fMRI data to define global brain networks which exhibited increased BOLD responses towards CS+ or CS- presentations, respectively. From these networks, we obtained mean values of gray matter density, neurite density, and neurite orientation dispersion. We found that mean gray matter density averaged across the CS+ network was significantly correlated with the strength of conditioned fear reactions quantified via skin conductance response. Measures of neurite architecture were not associated with conditioned fear reaction in any of the two networks. Our results extend previous findings on the relationship between brain morphometry and fear learning. Most importantly, our study is the first to introduce neurite imaging to fear learning research and discusses how its implementation can be improved in future research.


Author(s):  
Sandeep Pendyam ◽  
Dongbeom Kim ◽  
Gregory J. Quirk ◽  
Satish S. Nair

The lateral nucleus of amygdala (LA) is known to be a critical storage site for conditioned fear memory. Synaptic plasticity at auditory inputs to the dorsal LA (LAd) is critical for the formation and storage of auditory fear memories. Recent evidence suggests that two different cell populations (transient- and long-term plastic cells) are present in LAd and are responsible for fear learning. However, the mechanisms involved in the formation and storage of fear are not well understood. As an extension of previous work, a biologically realistic computational model of the LAd circuitry is developed to investigate these mechanisms. The network model consists of 52 LA pyramidal neurons and 13 interneurons. Auditory and somatosensory information reaches LA from both thalamic and cortical inputs. The model replicated the tone responses observed in the two LAd cell populations during conditioning and extinction. The model provides insights into the role of thalamic and cortical inputs in fear memory formation and storage.


2019 ◽  
Vol 85 (10) ◽  
pp. S216-S217
Author(s):  
Erik Dustrude ◽  
Izabela Caliman ◽  
Cristian Bernabe ◽  
Stephanie Fitz ◽  
Laura Grafe ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e32855 ◽  
Author(s):  
Yuan-Chang Hsu ◽  
Lung Yu ◽  
Hsiun-ing Chen ◽  
Hui-Ling Lee ◽  
Yu-Min Kuo ◽  
...  

Author(s):  
Andreas Frick ◽  
Johannes Björkstrand ◽  
Mark Lubberink ◽  
Allison Eriksson ◽  
Mats Fredrikson ◽  
...  

AbstractLearning which environmental cues that predict danger is crucial for survival and accomplished through Pavlovian fear conditioning. In humans and rodents alike, fear conditioning is amygdala-dependent and rests on similar neurocircuitry. Rodent studies have implicated a causative role for dopamine in the amygdala during fear memory formation, but the role of dopamine in aversive learning in humans is unclear. Here, we show dopamine release in the amygdala and striatum during fear learning in humans. Using simultaneous positron emission tomography and functional magnetic resonance imaging, we demonstrate that the amount of dopamine release is linked to strength of conditioned fear responses and linearly coupled to learning-induced activity in the amygdala. Thus, like in rodents, formation of amygdala-dependent fear memories in humans seems to be facilitated by endogenous dopamine release, supporting an evolutionary conserved neurochemical mechanism for aversive memory formation.


Sign in / Sign up

Export Citation Format

Share Document