scholarly journals Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of chondrogenically induced micro-pellets for cartilage tissue repair in vivo

Author(s):  
K. Futrega ◽  
E. Music ◽  
P.G. Robey ◽  
S. Gronthos ◽  
R.W. Crawford ◽  
...  

AbstractBackgroundBone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. The objective of this study was to characterize ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep.MethodsoBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Expanded oBMSC were positive for CD44 and CD146 and negative for CD45.ResultsThe common adipogenic induction medium ingredient, 3-Isobutyl-1-methylxanthine (IBMX) was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX from the medium. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not.ConclusionThe sensitivity of oBMSC to IBMX highlights species-species differences between oBMSC and hBMSC. Micro-pellets manufactured from oBMSC were not effective in repairing osteochondral defects, while oACh micro-pellets enabled modest repair. While oBMSC can be driven to form cartilage-like tissue in vitro, their effective use in cartilage repair will require mitigation of hypertrophy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
K. Futrega ◽  
E. Music ◽  
P. G. Robey ◽  
S. Gronthos ◽  
R. Crawford ◽  
...  

Abstract Bone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. Objective The objective of this study was to characterise ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep. Design oBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation capacity. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Results Expanded oBMSC were positive for CD44 and CD146 and negative for CD45. The common adipogenic induction ingredient, 3-Isobutyl-1-methylxanthine (IBMX), was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX from the medium. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not. Conclusion The sensitivity of oBMSC, compared to human BMSC, to IBMX in standard adipogenic assays highlights species-associated differences. Micro-pellets manufactured from oACh were more effective than micro-pellets manufactured from oBMSC in the repair of osteochondral defects in sheep. While oBMSC can be driven to form cartilage-like tissue in vitro, the effective use of these cells in cartilage repair will depend on the successful mitigation of hypertrophy and tissue integration.


2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0028
Author(s):  
Cecilia Pascual-Garrido ◽  
Francisco Rodriguez-Fontan ◽  
Masahiko Haneda ◽  
Elizabeth Aisenbrey ◽  
Karin Payne ◽  
...  

Objectives: A degradable biomaterial has been developed that resembles the native cartilage biochemical properties, in which stem cells can be seeded, differentiate and develop cartilaginous tissue. The purposes of this study were: 1) to determine if mesenchymal stem cells (MSCs) embedded in this cartilage mimetic hydrogel display in vitro chondrogenesis; 2) to demonstrate that the proposed hydrogel can be delivered in situ; and 3) to determine if the hydrogel ± MSCs supports in vivo chondrogenesis. Methods: A photopolymerizable hydrogel consisting of polyethylene glycol, CVPLSLYSGC, chondroitin sulfate (ChS), CRGDS and TGF-β3 was used. Equine bone marrow-derived MSCs were encapsulated in the hydrogel and cultured for 9 weeks. Compressive modulus was evaluated at day 1 and at weeks 3, 6 and 9. Chondrogenic differentiation was investigated via qPCR, Safranin-O staining and immunofluorescence. Three female horses were used. Two 15-mm width x 5-mm depth osteochondral defects were created bilaterally in the medial femoral condyle of each stifle joint. Five groups were established: Hydrogel (n=3), Hydrogel + MSCs (n=3), Microfracture (MFX, n=1), MFX + Hydrogel (n=3), and MFX + Hydrogel + MSCs (n=2). Repair tissue was evaluated at 6 months post intervention with the following cartilage repair scoring systems: macroscopically, International Cartilage Repair Society (ICRS); and histologically, the Modified O’Driscoll scoring (MODS) and ICRS II (Overall assessment 0%, fibrous -100%, hyaline cartilage).The ICRS parameter is scored using a 100-mm VAS, a score of 0 was assigned for properties considered indicative of poor quality and 100 for good quality. Results: In vitro, there was a significant increase in compressive modulus, collagen II and ChS as confirmation of chondrogenesis and hydrogel degradation. (Figure 1) In vivo, the hydrogel was readily photopolimerized in the defect. Cartilage repair was evident in all groups. As shown in Table 1, red indicates best quality score, blue means a poor quality score, but there was no statistical difference. According to the macroscopic ICRS, the hydrogel + MSCs performed better (P= 0.47). However, the MFX + Hydrogel + MSCs tended to perform better per the MODS (P= 0.61); and ICRS-Overall assessment (P= 0.9). Particularly, MFX showed the lowest score for subchondral bone(SCB) abnormalities (0% = abnormal, P= 0.09) but no inflammation was evident (100% = absent, P= 0.53), whereas the Hydrogel had the highest basal integration (100% = complete integration, P= 0.38) but presented moderate inflammation (Figure 2A). MFX showed SCB abnormalities and vascularization (Figure 2 B). Interestingly, a defect treated with MFX + Hydrogel presented more GAGs, less inflammation (vs Hydrogel) and less SCB abnormalities (vs MFX) (Figure 2C). Overall, the group performing better was MFX + Hydrogel + MSCs. Conclusion: This pilot study provides the first evidence of the ability to photopolymerize this novel hydrogel in situ and assess its ability to provide chondrogenic cues for cartilage repair in a large animal model. The presence of all three balanced factors (MFX, Hydrogel, MSCs) had higher scores per MODS summation and ICRS Overall assessment. Strengths of this study include: comparison of standard MFX therapy of osteochondral defects with a novel cartilage mimetic therapy; and use of a large animal that resembles the human knee biomechanically and anatomically. [Figure: see text][Figure: see text][Table: see text]


2019 ◽  
Vol 47 (10) ◽  
pp. 2316-2326 ◽  
Author(s):  
Xin Wang ◽  
Xiongbo Song ◽  
Tao Li ◽  
Jiajia Chen ◽  
Guotao Cheng ◽  
...  

Background: Recruitment of endogenous stem cells has been considered an alternative to cell injection/implantation in articular cartilage repair. Purpose: (1) To develop a cartilage tissue-engineering scaffold with clinically available biomaterials and functionalize the scaffold with an aptamer (Apt19s) that specifically recognizes pluripotent stem cells. (2) To determine whether this scaffold could recruit joint-resident mesenchymal stem cells (MSCs) when implanted into an osteochondral defect in a rabbit model and to examine the effects of cartilage regeneration. Study Design: Controlled laboratory study. Methods: The reinforced scaffold was fabricated by embedding a silk fibroin sponge into silk fibroin/hyaluronic acid–tyramine hydrogel and characterized in vitro. A cylindrical osteochondral defect (3.2 mm wide × 4 mm deep) was created in the trochlear grooves of rabbit knees. The rabbits were randomly assigned into 3 groups: Apt19s-functionalized scaffold group, scaffold-only group, and control group. Animals were sacrificed at 6 and 12 weeks after transplantation. Repaired tissues were evaluated via gross examination, histologic examination, and immunohistochemistry. Results: In vitro, this aptamer-functionalized scaffold could recruit bone marrow–derived MSCs and support cell adhesion. In vivo, the aptamer-functionalized scaffold enhanced cell homing in comparison with the aptamer-free scaffold. The aptamer-functionalized scaffold group also exhibited superior cartilage restoration when compared with the scaffold-only group and the control group. Conclusion: The Apt19s-functionalized scaffold exhibited the ability to recruit MSCs both in vitro and in vivo and achieved a better outcome of cartilage repair than the scaffold only or control in an osteochondral defect model. Clinical Relevance: The findings demonstrate a promising strategy of using aptamer-functionalized bioscaffolds for restoration of chondral/osteochondral defects via aptamer-introduced homing of MSCs.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sally A. Boxall ◽  
Elena Jones

Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs), in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native) bone marrow (BM) MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1) may have the strongest translational value. Whereas small animal models are needed to discover thein vivofunction on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 403
Author(s):  
Girolamo Di Maio ◽  
Nicola Alessio ◽  
Ibrahim Halil Demirsoy ◽  
Gianfranco Peluso ◽  
Silverio Perrotta ◽  
...  

Brown-like adipocytes can be induced in white fat depots by a different environmental or drug stimuli, known as “browning” or “beiging”. These brite adipocytes express thermogenin UCP1 protein and show different metabolic advantages, such as the ability to acquire a thermogenic phenotype corresponding to standard brown adipocytes that counteracts obesity. In this research, we evaluated the effects of several browning agents during white adipocyte differentiation of bone marrow-derived mesenchymal stromal cells (MSCs). Our in vitro findings identified two compounds that may warrant further in vivo investigation as possible anti-obesity drugs. We found that rosiglitazone and sildenafil are the most promising drug candidates for a browning treatment of obesity. These drugs are already available on the market for treating diabetes and erectile dysfunction, respectively. Thus, their off-label use may be contemplated, but it must be emphasized that some severe side effects are associated with use of these drugs.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


Sign in / Sign up

Export Citation Format

Share Document