scholarly journals Single caudate neurons encode temporally discounted value for formulating motivation for action

2020 ◽  
Author(s):  
Yukiko Hori ◽  
Koki Mimura ◽  
Yuji Nagai ◽  
Atsushi Fujimoto ◽  
Kei Oyama ◽  
...  

AbstractTemporal discounting captures both choice preferences and motivation for delayed rewards. While temporally discounted value for choice is represented in brain areas including the dorsolateral prefrontal cortex (DLPFC) and the striatum, the neural process of motivation for delayed rewards remains unidentified. Here we show that neuronal activity of the dorsal part of the primate caudate head (dCDh) — a striatal region receiving projection from the DLPFC — signals temporally discounted value essential for computing motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which a visual cue indicated the forthcoming size and delay duration before reward. Single dCDh neurons represented the temporally discounted value without reflecting changes in the animal’s physiological state. Bilateral pharmacological or chemogenetic inactivation of dCDh specifically distorted a normal motivational performance based on the integration of reward size and delay. These results suggest a major contribution of dCDh to encoding a temporally discounted value, the integrated multidimensional information critical for formulating the motivation for action.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yukiko Hori ◽  
Koki Mimura ◽  
Yuji Nagai ◽  
Atsushi Fujimoto ◽  
Kei Oyama ◽  
...  

The term ‘temporal discounting’ describes both choice preferences and motivation for delayed rewards. Here we show that neuronal activity in the dorsal part of the primate caudate head (dCDh) signals the temporally discounted value needed to compute the motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which visual cues indicated the forthcoming size and delay duration before reward. Single dCDh neurons represented the temporally discounted value without reflecting changes in the animal’s physiological state. Bilateral pharmacological or chemogenetic inactivation of dCDh markedly distorted the normal task performance based on the integration of reward size and delay, but did not affect the task performance for different reward sizes without delay. These results suggest that dCDh is involved in encoding the integrated multidimensional information critical for motivation.


2020 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

ABSTRACTThe dorsolateral prefrontal cortex plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here we addressed whether this predictive ability extends to categorical judgments based on information retained in working memory, and is present in other brain areas. We trained monkeys in a novel, Match-Stay, Nonmatch-Go task, which required them to observe two stimuli presented in sequence with an intervening delay period between them. If the two stimuli were different, the monkeys had to saccade to the location of the second stimulus; if they were the same, they held fixation. Neurophysiological recordings were performed in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC. We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and towards the location of the second stimulus would result in categorical errors. Indeed, for both areas, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials. When the first stimulus appeared at a nonpreferred location and the second stimulus at a preferred, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and the magnitude of neuronal firing rate deviations is revealing of the contents of working memory as it determines performance.SIGNIFICANCE STATEMENTThe neural basis of working memory and the areas mediating this function is a topic of controversy. Persistent activity in the prefrontal cortex has traditionally been thought to be the neural correlate of working memory, however recent studies have proposed alternative mechanisms and brain areas. Here we show that persistent activity in both the dorsolateral prefrontal cortex and posterior parietal cortex predicts behavior in a working memory task that requires a categorical judgement. Our results offer support to the idea that a network of neurons in both areas act as an attractor network that maintains information in working memory, which informs behavior.


Cortex ◽  
2013 ◽  
Vol 49 (5) ◽  
pp. 1404-1419 ◽  
Author(s):  
Mélanie Kaeser ◽  
Thierry Wannier ◽  
Jean-François Brunet ◽  
Alexander Wyss ◽  
Jocelyne Bloch ◽  
...  

2019 ◽  
Vol 14 (6) ◽  
pp. 569-577 ◽  
Author(s):  
Clara Pretus ◽  
Nafees Hamid ◽  
Hammad Sheikh ◽  
Ángel Gómez ◽  
Jeremy Ginges ◽  
...  

AbstractWillingness to fight and die (WFD) has been developed as a measure to capture willingness to incur costly sacrifices for the sake of a greater cause in the context of entrenched conflict. WFD measures have been repeatedly used in field studies, including studies on the battlefield, although their neurofunctional correlates remain unexplored. Our aim was to identify the neural underpinnings of WFD, focusing on neural activity and interconnectivity of brain areas previously associated with value-based decision-making, such as the ventromedial prefrontal cortex (vmPFC) and the dorsolateral prefrontal cortex (dlPFC). A sample of Pakistani participants supporting the Kashmiri cause was selected and invited to participate in an functional magnetic resonance (fMRI) paradigm where they were asked to convey their WFD for a series of values related to Islam and current politics. As predicted, higher compared to lower WFD was associated with increased ventromedial prefrontal activity and decreased dorsolateral activity, as well as lower connectivity between the vmPFC and the dlPFC. Our findings suggest that WFD more prominently relies on brain areas typically associated with subjective value (vmPFC) rather than integration of material costs (dlPFC) during decision-making, supporting the notion that decisions on costly sacrifices may not be mediated by cost-benefit computation.


2019 ◽  
Vol 31 (9) ◽  
pp. 1290-1307 ◽  
Author(s):  
Aneta Brzezicka ◽  
Jan Kamiński ◽  
Chrystal M. Reed ◽  
Jeffrey M. Chung ◽  
Adam N. Mamelak ◽  
...  

Holding information in working memory (WM) is an active and effortful process that is accompanied by sustained load-dependent changes in oscillatory brain activity. These proportional power increases are often reported in EEG studies recording theta over frontal midline sites. Intracranial recordings, however, yield mixed results, depending on the brain area being recorded from. We recorded intracranial EEG with depth electrodes in 13 patients with epilepsy who were performing a Sternberg WM task. Here, we investigated patterns of theta power changes as a function of memory load during maintenance in three areas critical for WM: dorsolateral prefrontal cortex (DLPFC), dorsal ACC (dACC), and hippocampus. Theta frequency power in both hippocampus and dACC increased during maintenance. In contrast, theta frequency power in the DLPFC decreased during maintenance, and this decrease was proportional to memory load. Only the power decreases in DLPFC, but not the power increases in hippocampus and dACC, were predictive of behavior in a given trial. The extent of the load-related theta power decreases in the DLPFC in a given participant predicted a participant's RTs, revealing that DLPFC theta explains individual differences in WM ability between participants. Together, these data reveal a pattern of theta power decreases in the DLPFC that is predictive of behavior and that is opposite of that in other brain areas. This result suggests that theta band power changes serve different cognitive functions in different brain areas and specifically that theta power decreases in DLPFC have an important role in maintenance of information.


Sign in / Sign up

Export Citation Format

Share Document